
SoC Design & Architecture

Pushkar Sareen

Agenda

Building Blocks

#

NVM,SRAM, Peripherals#

Camera, DDR

#

#
Case Study: Security Camera
Optimizing for Performance and Area/Cost

#

#

Sample application

Data flow evolution What-ifs

#

#

Integration flow

A
rc

h
it
e

c
tu

re

F
ro

n
te

n
d
 D

e
s
ig

nDocumentation

IP Selection
Parametrization

Sign Offs

Integration

• Slaves

They receive the ‘commands’

of a transactions and respond

with data or response

Terms

• Initiators/Masters

They ‘initiate’ transactions and

wait for the data or response
• Interconnect

‘Routes’ transaction commands Masters

→ Slaves

&

‘Routes’ transaction data or response
Slaves → Masters

Transaction consists of a Command and a corresponding Data or a Response

Camera

Subsyst

em

Camera IP AI Engine

Sensor

MEMORY

Camera Subsystem

Sensor

Camera IP

INTERCONNECT

SRAM

Camera IP
Keeps recording images

at 30 frames per second

No pushback possible

Finite space

Finite space

Features:

• Converts Bayer Pattern to RGB

• Pixel decompression

• Scaling

• Removes Noise

Examples of IPs which are not real time:

- AI engine is a bandwidth critical IP

- CPU is a latency critical IP

A

Realtime IP!

AI

Engine

DDR

Controller

DDR

DDR and its Controller

Performance aspects
DDR is a type of SDRAM (Synchronous Dynamic Random

Access Memory)

R
o
w

 D
e
c
o
d
e
r

Bank0

Bank1

Bank3

Active Row

Column muxes

Bank muxes

Data out

Row Buffers

ADDR

A row usually can hold hundreds of transaction worth of data

READ requires two operations:

1) open a row in a bank [if not already open]

2) Selecting data from row buffer

WRITE requires three operations:

1) open a row in a bank [if not already open]

2) Updating row buffer

3) later writing row buffer back to the bank (closing).

House keeping:

Capacitors loose charge overtime because of leakage

current. These cells have to be refreshed at a certain

frequency

DDR and its Controller
Performance aspects

Opening a Row Buffer is a time consuming operation.

Hence, DDR controllers want to keep the row open as

long as they anticipate a request to the same row.

=> Requests to DDR will no longer be serviced in order

Performance Implication: Masters would see

exceptionally large and exceptionally variable response

times

R
o
w

 D
e
c
o
d
e
r

Bank0

Bank1

Bank3

Active Row

Column muxes

Bank muxes

Data out

Row Buffers

DDR

Controller

To reduce latency, latency critical

masters may be provided with

dedicated transaction paths

DDR

Interconnect

Dedicated for CPU

DDR PowerPerfArea Summary

+ Much denser than SRAM hence saves

- Larger peak access times

- Consumes more power

- Lower available Bandwidth

Mr. Money

Mr. Performance

SRAM

Contr

oller0

M

0

M

1

SRAM

Contr

oller1

M

0

M

1

NVM

Controller

NVM

Non Volatile Memory

• Good to hold code and static data

• Various prevalent technologies are there : PCM, RRAM and MRAM

• Typically, EEPROM emulation support is there to store data which needs

to be retained across power cycle

• Writes are slow, read is decent

Static Random Access Memory

• SRAM cell is made of made of Multi Transistor cross-coupled
inverters

• Used in CPU Cache’s, IP and SoC internal scratchpad
memories

• SRAM is faster and more expensive than DDR

Peripheral Interconnect

Serial

Connectivity

(I2C etc)

Timers PWMs
ADCs

and

DACs

RNG

Coherent Interconnect

DDR

Controller

DDR

Processor

Block

Interrupt

Controller

with ITS

Virtualization

Block

Debug

Block

SRAM

Contr

oller0

M

0

System

Controller

Peripheral Interconnect

M

1

SRAM

Contr

oller1

M

0

M

1

Serial

Connectivity

(I2C etc)

NVM

Controller

NVM

Camera

Subsyst

em
DMA Ethernet

Timers PWMs
ADCs

and

DACs

RNG

SD Card

Controller

Appliances Metering Robotics &

Automation

Healthcare

Applications

16

Power Tools

Secure Locks Surveillance Smart Homes &

Buildings

Drives, Pumps,

Compressors

Lighting

MCD Divison Overview Dec 2021

Marketing Requirement:

To design a SoC for a security camera

• Feature list:

• Support RGB + IR camera

• Illuminating Leds

• Record video in external memory

• Live Stream

• Motor control

• Face detections

• Etc.

Sample Application:
Security Camera with Inbuilt battery

For this case study our objective is to reach a consensus between Money and Performance

• Developing part of the dataflow

• Identifying buffer/memory sizes

• Identifying CPU capabilities

Negotiate

Negotiate using the language of :

Key Performance Indicators and Cost Indicator

High Level Key Performance Indicator

• What rate are we able to process the frames?

At architectural level High level KPIs are typically derived

from customer requirement and ‘realized’ or ‘verified’ using

low level KPIs

• MIPS : Million Instructions Per Second that core can/or did run

Requirement of MIPS get driven by algorithm complexity that runs on the CPU

• Bandwidth : How many transactions pass a point per second

Requirement driven by amount of data movement that happens as per the dataflow

• Throughput: Generic term. How many jobs pass a point per second

CPU performance may also be measured as Jobs/Second and maybe called throughput

Camera data bandwidth may also be called throughput

Low Level KeyPerfIndicator

DDR

Low Level KeyPerfIndicator

Interconnect

Core

DDR

Contr.
SRAM

Contr.

CPU CMD

CPU DATA

Time

SRAM

Transaction 0 “round trip time” = 7

Number of OUTSTANDING COMMANDS 0 1 2 3 2 1 0

A B

Point (A)

Point (B)

SRAM

How much time it takes for a particular

transactions data to reach back to the master

after initiation of that transaction’s command

DDR

0 1 2 3 4 5 6 7

• Round Trip Time or Latency

• Lower Cost:

• Less Area: lesser the silicon area, lesser the cost

• Lower Power:

• Lower cost to manage the thermal

• Cheaper packages

• Smaller or no heat sinks

• Competitive Advantage:

• Less Power: Less restrictions on where you can sell your chip

• High Performance

Cost Indicator

Global

shutter

sensors

Image Sensor

Monolithic

LED drivers

LED driver

DDR

Security

Camera

Processor

Ethernet

Serial

Connect.

Wired Connectivity

Ethernet

PHY

Transceivers

Voltage

Regulators

Power Management

Sample Application : Security Camera

Crystal

Motor

IR

+

Camera Dataflow

Camera SRAM Processor EthernetSRAM

SD Card

How much SRAM will be needed?

Image Sensor spec: https://www.st.com/en/imaging-and-photonics-solutions/vb1940.html#overview

Apart from SRAM needed for OS, drivers and data structures for other peripherals we will need

2560x1984x16bits to store 1 frame = 10 MB!.

How many frames do we need to store in SRAM?

This is influenced by :

Algorithm: How many previous frames does the algorithm need?

CPU execution variability: OS, drivers/other services may introduce variability in

execution, thereby forcing need for additional circular buffering. Typically, this

may mean much more than 1 frame

Let’s update the data flow to use DDR!

5.1MP

2560x1984 pix

(12-bit) @30fps

Sensor
NVM

Camera Dataflow

Camera DDR Processor EthernetSRAM

SD Card

5.1MP

2560x1984 pix

(12-bit) @30fps

RGB/NIR

Sensor

DDRs although can provide decent Bandwidth, they come with occasional peak latency problem.

Camera is a real time IP hence it may be needed to re-evaluate buffering inside camera

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

0.0 20.0 40.0 60.0 80.0

DDR Utilization vs Round Trip
Time

Peak anticipated latency = 1500 us

This maybe too big to be dedicated

just for camera.

So, we route the frame to DDR via

SRAM using DMA, all the while

storing only part of the frame in

SRAMUtilization

R
o

u
n

d
 T

ri
p

(u
s
)

NVM

Application requirement

56%

=> Buffer needed = 1500us x 10MB/(1/30sec) x 1.1(blanking)

= ~ 500 KB !

Camera Dataflow

Camera DDR Processor EthernetSRAM

SD Card

5.1MP

2560x1984 pix

(12-bit) @30fps

RGB/NIR

Sensor

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

6000.0

7000.0

8000.0

0.0 20.0 40.0 60.0 80.0

DDR Utilization vs Latency

Application requires 56% DDR Bandwidth utilization

Peak latency = 1500 us

 Buffer needed = 1500us x 10MB/(1/30sec) x 1.1(blanking) = ~ 500 KB

This maybe too big to be dedicated just for camera. So, we put it in

SRAM and use DMA to move the data to DDR

SRAM DMA

DDRs although can provide decent Bandwidth, they come with occasional peak latency problem.

Camera is a real time IP. peak latency Hence it may be needed to re-evaluate buffering inside camera

NVM

Camera Dataflow

Camera DDR Processor EthernetSRAM

SD Card

5.1MP

2560x1984 pix

(12-bit) @30fps

RGB/NIR

Sensor

SRAM DMA

What kind of processor do we need to buy/build?

There can be many strategies here, some experts tell me we should split the

Processor block into two parts. Image processing handled by an Application

processor+extensions or DSP and analysis handled by AI engine

What capability(or parallel engines) do we need from the AI engine?

Give me a minute...err….days(maybe months?)… to figure it out..

Analysis Phase
E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t(

X
)

Jobs in System(N)

Throughput Asymptotic bound

System bound

Processing Block 0

Processing Block 1

Processing Block N

AI Engine

M

E

M

O

R

R

Y

M

E

M

O

R

R

Y

Analysis Phase
E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t(

X
)

Jobs in System(N)

Throughput Asymptotic bound

System bound

1

18+9+5+4
jobs/sec

N=1

Analysis Phase
E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t(

X
)

Jobs in System(N)

Throughput Asymptotic bound

System bound

2

18+9+5+4
jobs/sec

N=2

Throughput ∝ N

Throughput ∝
1

18+9+5+4

If we can

pipeline
the jobs

efficiently

Analysis Phase
E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t(

X
)

Jobs in System(N)

Throughput Asymptotic bound

Time spent in system by a job =

How far can I take this?

X(throughput) is proportional to N(jobs in the system)

Think time of AI Engine (Z)
+

Total Service time of job on every node (D)

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝑵

𝑫+ 𝒁

Analysis Phase
E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t(

X
)

Jobs in System(N)

Throughput Asymptotic bound

“Slowest step will determine the maximum speed”

1/Dmax = 1/9 = 0.111 jobs per second

ExtensionNumber of Jobs/Transactions

in the system

Total Service

Demand at all

nodes (time)

Think

time

Maximum

Service

0

0.02

0.04

0.06

0.08

0.1

0.12

0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t(

X
)

Jobs in System(N)

Throughput Asymptotic bound

System bound

Achieved

throughput

1/Dmax

E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec

Key Question

What should be the capability of the AI Engine?

Answer:

Think time to stay at 18sec while throughput is to maintained at 0.111 jobs/sec

So, we need an AI Engine which can do atleast 2 jobs every 18sec or

We need 2 Engine which can do atleast 1 job every 18 sec

Which of these is better? 

System-on-Chip (SoC) Design

SoC Design includes:
• Integrating multiple IP blocks and subsystems

Frontend integration is a collection of various
activities:
- Documentation:

- IP selection , parameterization and integration
- Bus architecture and interconnect design
- Clock and power distribution

- Actual RTL – instantiation and Connection

- Quality Checks: CDC, RDC, and Lint.

ADC Subsystem IPs

Documentation
Documentation First!

- Arguably it is the most important step of

Design Implementation

- A tool to THINK and WORK!
- Lets others to review your work

Following documents are created:
1. Design specifications: Co-owned with Arch.

Describe the high-level requirements and
specifications of the SoC design, such as the target
application, performance requirements, power
requirements, and other design constraints.

2. Design documents:
Provide a detailed description of the SoC design,

including the IP blocks, bus architecture, clock and
power distribution, and other design details. May
include design constraints, such as timing
constraints, power constraints, and area constraints.

Documentation: Do’s and Dont’s

Single SourceClassifyBe relevant and verbose

Frontend: IP Selection, Parametrization and Integration
• Selecting the right IP for the job

• CPU selection:
• Application – Real Time/Non Realtime/ Data Intensive or Control Intensive/

Floating point or Fixed Point/Low power or high power/low or high
performance etc.

• Memories:
• What should be the width of SRAM? ECC requirements?
• Retention

• Suppression of features – Parametrization

• Integration: Generate the RTL!
• Clock flexibility/Control
• Reset flexibility – Reset retentions
• Safety requirements
• Power domains
• Compatibility

Quality Checks/Signoffs

Why Quality Checks in Design Cycle:

- Cost and Effort of handling a bug grows exponentially with time!

Major Frontend Design Signoffs

• LINT

• CDC

• RDC

• …

Quality Checks(Lint)

Lint signoff ensures that the SoC design meets the coding guidelines and
does not have any coding errors or issues. Lint signoff involves analyzing the
design code and ensuring that it meets the coding guidelines and standards.

“Intent matches implementation”

Quality Checks (CDC)

CDC signoff: CDC (Clock Domain Crossing) signoff ensures that the data transfer
between different clock domains is reliable and does not result in any data loss
or corruption. CDC signoff involves analyzing the clock domain crossing paths
and ensuring that they meet the timing constraints.

Quality Checks(RDC)

RDC signoff: RDC (Reset Domain Crossing) signoff ensures that the reset
signals are correctly synchronized between different reset domains. RDC
signoff involves analyzing the reset domain crossing paths and ensuring that
they meet the timing constraints.

Conclusion

Design and Architecture is essentially a tradeoff

exercise between Power, Performance, Area, IP,

Frontend and Backend Implementation,

Schedule etc. etc.

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Find out more at www.st.com

http://www.st.com/trademarks
http://www.st.com/

	Slide 1: SoC Design & Architecture
	Slide 2
	Slide 3: Agenda
	Slide 4: Terms
	Slide 5
	Slide 6: Camera Subsystem
	Slide 7
	Slide 8
	Slide 9: DDR and its Controller Performance aspects
	Slide 10: DDR and its Controller Performance aspects
	Slide 11: DDR PowerPerfArea Summary
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Applications
	Slide 17: Sample Application: Security Camera with Inbuilt battery
	Slide 18: High Level Key Performance Indicator
	Slide 19: Low Level KeyPerfIndicator
	Slide 20: Low Level KeyPerfIndicator
	Slide 21: Cost Indicator
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Analysis Phase
	Slide 28: Analysis Phase
	Slide 29: Analysis Phase
	Slide 30: Analysis Phase
	Slide 31: Analysis Phase
	Slide 32: Extension
	Slide 33: Key Question
	Slide 34: System-on-Chip (SoC) Design
	Slide 35: Documentation
	Slide 36: Documentation: Do’s and Dont’s
	Slide 37: Frontend: IP Selection, Parametrization and Integration
	Slide 38: Quality Checks/Signoffs
	Slide 39: Quality Checks(Lint)
	Slide 40: Quality Checks (CDC)
	Slide 41: Quality Checks(RDC)
	Slide 42: Conclusion
	Slide 43

