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• Slaves

They receive the ‘commands’

of a transactions and respond

with data or response

Terms

• Initiators/Masters

They ‘initiate’ transactions and

wait for the data or response
• Interconnect

‘Routes’ transaction commands Masters 

→ Slaves

&

‘Routes’ transaction data or response
Slaves → Masters

Transaction consists of a Command and a corresponding Data or a Response
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Camera IP AI Engine

Sensor

MEMORY

Camera Subsystem



Sensor

Camera IP

INTERCONNECT

SRAM

Camera IP
Keeps recording images 

at 30 frames per second

No pushback possible

Finite space

Finite space

Features:

• Converts Bayer Pattern to RGB

• Pixel decompression

• Scaling

• Removes Noise

Examples of IPs which are not real time:

- AI engine is a bandwidth critical IP

- CPU is a latency critical IP

A

Realtime IP!

AI 

Engine
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DDR and its Controller

Performance aspects
DDR is a type of SDRAM (Synchronous Dynamic Random 

Access Memory)
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Bank1

Bank3

Active Row

Column muxes

Bank muxes

Data out

Row Buffers

ADDR

A row usually can hold  hundreds of transaction worth of data

READ requires two operations:

1) open a row in a bank [if not already open]

2) Selecting data from row buffer

WRITE requires three operations:

1) open a row in a bank [if not already open]

2) Updating row buffer

3) later writing row buffer back to the bank (closing).

House keeping:

Capacitors loose charge overtime because of leakage 

current. These cells have to be refreshed at a certain 

frequency



DDR and its Controller
Performance aspects

Opening a Row Buffer is a time consuming operation. 

Hence, DDR controllers want to keep the row open as 

long as they anticipate a request to the same row. 

=> Requests to DDR will no longer be serviced in order

Performance Implication: Masters would see 

exceptionally large and exceptionally variable response 

times
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DDR 

Controller

To reduce latency, latency critical 

masters may be provided with 

dedicated transaction paths

DDR

Interconnect

Dedicated for CPU



DDR PowerPerfArea Summary

+  Much denser than SRAM hence saves

- Larger peak access times

- Consumes more power

- Lower available Bandwidth  

Mr. Money

Mr. Performance
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Non Volatile Memory

• Good to hold code and static data

• Various prevalent technologies are there : PCM, RRAM and MRAM

• Typically, EEPROM emulation support is there to store data which needs 

to be retained across power cycle

• Writes are slow, read is decent

Static Random Access Memory

• SRAM cell is made of made of Multi Transistor cross-coupled 
inverters

• Used in CPU Cache’s, IP and SoC internal scratchpad 
memories 

• SRAM is faster and more expensive than DDR



Peripheral Interconnect
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(I2C etc)
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Coherent Interconnect
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Appliances Metering Robotics & 

Automation

Healthcare

Applications

16

Power Tools

Secure Locks Surveillance Smart Homes & 

Buildings

Drives, Pumps, 

Compressors

Lighting

MCD Divison Overview Dec 2021



Marketing Requirement:

To design a SoC for a security camera

• Feature list:

• Support RGB + IR camera

• Illuminating Leds

• Record video in external memory

• Live Stream

• Motor control

• Face detections

• Etc.

Sample Application:
Security Camera with Inbuilt battery

For this case study our objective is to reach a consensus between Money and            Performance

• Developing part of the dataflow

• Identifying buffer/memory sizes

• Identifying CPU capabilities

Negotiate

Negotiate using the language of : 

Key Performance Indicators and Cost Indicator



High Level Key Performance Indicator

• What rate are we able to process the frames?

At architectural level High level KPIs are typically  derived 

from customer requirement and ‘realized’ or ‘verified’ using 

low level KPIs



• MIPS : Million Instructions Per Second that core can/or did run

Requirement of MIPS get driven by algorithm complexity that runs on the CPU

• Bandwidth : How many transactions pass a point per second

Requirement driven by amount of data movement that happens as per the dataflow

• Throughput: Generic term. How many jobs pass a point per second

CPU performance may also be measured as Jobs/Second and maybe called throughput

Camera data bandwidth may also be called throughput

Low Level KeyPerfIndicator



DDR

Low Level KeyPerfIndicator

Interconnect

Core

DDR 

Contr.
SRAM

Contr.

CPU CMD

CPU DATA

Time

SRAM

Transaction 0 “round trip time” = 7

Number of OUTSTANDING COMMANDS 0 1 2 3 2 1 0

A B

Point (A)

Point (B)

SRAM

How much time it takes for a particular 

transactions data to reach back to the master 

after initiation of that transaction’s command

DDR

0     1     2     3      4     5      6      7

• Round Trip Time or Latency



• Lower Cost:

• Less Area: lesser the silicon area, lesser the cost

• Lower Power: 

• Lower cost to manage the thermal

• Cheaper packages

• Smaller or no heat sinks

• Competitive Advantage:

• Less Power: Less restrictions on where you can sell your chip

• High Performance

Cost Indicator
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Camera Dataflow

Camera SRAM Processor EthernetSRAM

SD Card

How much SRAM will be needed?

Image Sensor spec: https://www.st.com/en/imaging-and-photonics-solutions/vb1940.html#overview

Apart from SRAM needed for OS, drivers and data structures for other peripherals we will need

2560x1984x16bits to store 1 frame = 10 MB!.

How many frames do we need to store in SRAM?

This is influenced by :

Algorithm: How many previous frames does the algorithm need?

CPU execution variability: OS, drivers/other services may introduce variability in 

execution, thereby forcing need for additional circular buffering. Typically, this 

may mean much more than 1 frame

Let’s update the data flow to use DDR!

5.1MP 

2560x1984 pix 

(12-bit) @30fps

Sensor
NVM



Camera Dataflow

Camera DDR Processor EthernetSRAM

SD Card

5.1MP 

2560x1984 pix 

(12-bit) @30fps

RGB/NIR

Sensor 

DDRs although can provide decent Bandwidth, they come with occasional peak latency problem.

Camera is a real time IP hence it may be needed to re-evaluate buffering inside camera
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DDR Utilization vs Round Trip 
Time

Peak anticipated latency = 1500 us

This maybe too big to be dedicated 

just for camera. 

So, we route the frame to DDR via 

SRAM using DMA, all the while 

storing only part of the frame in 

SRAMUtilization
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NVM

Application requirement

56%

=> Buffer needed = 1500us x 10MB/(1/30sec) x 1.1(blanking) 

= ~ 500 KB !



Camera Dataflow

Camera DDR Processor EthernetSRAM

SD Card

5.1MP 

2560x1984 pix 

(12-bit) @30fps

RGB/NIR

Sensor 
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DDR Utilization vs Latency

Application requires 56% DDR Bandwidth utilization

Peak latency = 1500 us

 Buffer needed = 1500us x 10MB/(1/30sec) x 1.1(blanking) = ~ 500 KB

This maybe too big to be dedicated just for camera. So, we put it in 

SRAM and use DMA to move the data to DDR

SRAM DMA

DDRs although can provide decent Bandwidth, they come with occasional peak latency problem.

Camera is a real time IP. peak latency Hence it may be needed to re-evaluate buffering inside camera

NVM



Camera Dataflow

Camera DDR Processor EthernetSRAM

SD Card

5.1MP 

2560x1984 pix 

(12-bit) @30fps

RGB/NIR

Sensor 

SRAM DMA

What kind of processor do we need to buy/build?

There can be many strategies here, some experts tell me we should split the 

Processor block into two parts. Image processing handled by an Application 

processor+extensions or DSP and analysis handled by AI engine

What capability(or parallel engines) do we need from the AI engine? 

Give me a minute...err….days(maybe months?)… to figure it out..



Analysis Phase
E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec
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Analysis Phase
E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec
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Analysis Phase
E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec
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Throughput ∝ N

Throughput ∝
1
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If we can 

pipeline
the jobs 

efficiently



Analysis Phase
E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec
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Time spent in system by a job = 

How far can I take this?

X(throughput) is proportional to N(jobs in the system)

Think time of AI Engine (Z)
+

Total Service time of job on every node (D)

𝑻𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 =
𝑵

𝑫+ 𝒁



Analysis Phase
E[AI Engine Think time] = 18 sec

E[DSP Service Time] = 9 sec

E[MemoryA Service Time] = 5 sec

E[MemoryB Service Time] = 4 sec
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“Slowest step will determine the maximum speed”

1/Dmax = 1/9 = 0.111 jobs per second



ExtensionNumber of Jobs/Transactions 

in the system

Total Service 
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Key Question

What should be the capability of the AI Engine?

Answer:

Think time to stay at 18sec while throughput is to maintained at 0.111 jobs/sec

So, we need an AI Engine which can do atleast 2 jobs every 18sec       or 

We need 2 Engine which can do atleast 1 job every 18 sec

Which of these is better? 



System-on-Chip (SoC) Design

SoC Design includes:
• Integrating multiple IP blocks and subsystems

Frontend integration is a collection of various 
activities:
- Documentation: 

- IP selection , parameterization and integration
- Bus architecture and interconnect design
- Clock and power distribution

- Actual RTL – instantiation and Connection

- Quality Checks: CDC, RDC, and Lint.

ADC Subsystem IPs



Documentation
Documentation First!

- Arguably it is the most important step of 

Design Implementation

- A tool to THINK and WORK!
- Lets others to review your work

Following documents are created:
1. Design specifications: Co-owned with Arch.

Describe the high-level requirements and 
specifications of the SoC design, such as the target 
application, performance requirements, power 
requirements, and other design constraints.

2. Design documents: 
Provide a detailed description of the SoC design, 

including the IP blocks, bus architecture, clock and 
power distribution, and other design details. May 
include  design constraints, such as timing 
constraints, power constraints, and area constraints.



Documentation: Do’s and Dont’s

Single SourceClassifyBe relevant and verbose



Frontend: IP Selection, Parametrization and Integration
• Selecting the right IP for the job

• CPU selection: 
• Application – Real Time/Non Realtime/ Data Intensive or Control Intensive/ 

Floating point or Fixed Point/Low power or high power/low or high 
performance etc.

• Memories:
• What should be the width of SRAM? ECC requirements?
• Retention

• Suppression of features – Parametrization

• Integration: Generate the RTL!
• Clock flexibility/Control
• Reset flexibility – Reset retentions
• Safety requirements
• Power domains
• Compatibility



Quality Checks/Signoffs

Why Quality Checks in Design Cycle:

- Cost and Effort of handling a bug grows exponentially with time!

Major Frontend Design Signoffs

• LINT

• CDC

• RDC

• …



Quality Checks(Lint)

Lint signoff ensures that the SoC design meets the coding guidelines and 
does not have any coding errors or issues. Lint signoff involves analyzing the 
design code and ensuring that it meets the coding guidelines and standards.

“Intent matches implementation”



Quality Checks (CDC)

CDC signoff: CDC (Clock Domain Crossing) signoff ensures that the data transfer 
between different clock domains is reliable and does not result in any data loss 
or corruption. CDC signoff involves analyzing the clock domain crossing paths 
and ensuring that they meet the timing constraints.



Quality Checks(RDC)

RDC signoff: RDC (Reset Domain Crossing) signoff ensures that the reset 
signals are correctly synchronized between different reset domains. RDC 
signoff involves analyzing the reset domain crossing paths and ensuring that 
they meet the timing constraints.



Conclusion

Design and Architecture is essentially a tradeoff 

exercise between Power, Performance, Area, IP, 

Frontend and Backend Implementation, 

Schedule etc. etc.
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