
© 2023 Arm

Parivesh and Vikash

VLSI workshop
on System Validation

2 © 2023 Arm

Multi-layered verification strategy

Exhaust finding bugs at the lowest
level before moving up a level of
abstraction

Bottom-up verification
methodology followed for each IP
in the system like Processor, GPU,
Interconnect, etc.

• At-speed testing of external interfaces

• Extended OS payloads

• API compliance testing

Silicon
verification

• Interoperability

• Real payloads & benchmarking

• OS-boot & application stress

System
verification

• Basic directed testing

• Random testing

• Realistic payloads
Top level

• Unit-level testbenches

• Formal proofs
Unit level

3 © 2023 Arm

An example of unit-level verification

This example shows the unit-
level verification of the Snoop
Control Unit (SCU) inside a
processor

Bus-Functional Units (BFMs) are
used to imitate the traffic
coming from other units

Random traffic is used to
thoroughly verify the unit and
find all bugs

4 © 2023 Arm

An example of top-level verification

This example shows the top-
level verification setup for a
multi-core processor with a fake
system

Fake System

Clock & Reset Generator

Memory model

Interrupts generator

Read-write sensitive device

Console for prints from CPU

External observer

Processor

Bus Interface

Core 0 Core 1 Core 2 Core n

DSU Caches

5 © 2023 Arm

An example processor subsystem

ELP Core
Big Core

Little Core

DynamIQ Shared Unit

6 © 2023 Arm

Introduction to system level verification

Generate
stimulus

(RIS tools)

Render and
Build

(Sys Config)

Run &
Debug
(Soak)

IP RTL, Test Bench, Traffic
generators – fully synthesizable
for ease of use on Emulators
and FPGA

Random Instruction Sequence
(RIS) generators, Instruction
driven stimulus, Generators are
proven on many designs

Run & debug fails, Analysis
through Statistical coverage,
f/b for Stimulus generators,
Iterative process

7 © 2023 Arm

System Level Verification Overview

System Level Testbench
(Emulators/FPGA)

Results DB

POSIX Thread
scheduler

Baremetal
tests

IP/CSS configs
for baremetal

testing

Memory system
& cache testing

IP/CSS
scenarios/

System-level
scenarios

Baremetal Testing
Focused on CPUs
and System IP

Focus on:

• Multi-cluster,
Multi-Chip

• System-Level
Cache coherence

• Interrupts &
Power

• IP micro-
architectural
features

Operating
System:

(E.g.
Linux)

Real world
Applications

Synthetic
Applications/

Tests

Software
Configurations

IP/CSS configs
for OS-based

testing

OS-based Testing Focused on CPUs
and System IP

Focus on:

• Multi-cluster

• Multiple
hardware &
software
configs

• OS-boot
scenarios

RIS tools used for
stimulus
generation

8 © 2023 Arm

Processor as part of a sub-system

ELP Core
Big Core

Little Core

DynamIQ Shared Unit

9 © 2023 Arm

An example processor made of multiple units

D
ec

o
d

er

Register
Bank

In
st

ru
ct

io
n

Fe
tc

h
 U

n
it

ALU Tr
ac

e
In

te
rf

ac
e

Memory Interface

In
te

rr
u

p
t

C
o

n
tr

o
lle

r

Processor Core System

Memory
Protection

Unit

Bus Interface Unit

Debug

System

Debug
Interface

Arm Processor

Code
Memory

Memory System
and Peripherals

Private
Peripherals

Interrupts Trace

Debug

Optional

Instruction Bus Data Bus

10 © 2023 Arm

System Verification
Methodology

Challenge

• ~450 arm64 instructions, 12 stage pipeline, 10^23 combinations

• Overlay with interrupts, memory types, levels of cache, traffic
from other agents – state space explosion

Approach

• Impractical to cover the state space using directed stimulus

• Taken the random verification approach

Solution

• We created a couple of tools that focusses on different areas of
the system

11 © 2023 Arm

SVRIS Tools

SV-RIS tools

Used within Arm for verifying CPUs and System
IP for several years now

Have found over 400 bugs

Supports emulator, FPGA, and silicon

Scalable with the number of CPUs – have been
run on a 64-CPU system

Use multi-pass consistency data checking
• Tests are run twice or more (on same or

different CPU variants) and results are
compared across runs

• Correctness check

Tool 1

• Memory focused RIS generator

• Areas of focus: Cache coherence, atomics,
ordering, translation, memsys – inter-cluster
and within cluster, power, RAS

• For semi directed MP tests

• Core pipeline focused RIS generator, supports
full ISA

• Areas of focus: Data forwarding, hazards,
flushes, exceptions, branches, speculation, etc.

Tool 2

12 © 2023 Arm

Types of fails found using the RIS Tools

Deadlock/Live
Lock

Consistency
Check Failure

FUNC/Macro
Check Failure

Unexpected
Exception

Deadlock Live lock

Run1 Run2

A B

Exception

Self
checking

test

5 7
FUNC/Macro specific
check fail

13 © 2023 Arm

OS Based Validation
Use Case Scenarios

Linux boot/bring-up

Execute payloads that target real world use case scenarios on reference systems

Run Linux along with hypervisors
In house Hypervisor testbench
KVM

14 © 2023 Arm

System Level Statistical Coverage

• Event coverage is collected at system
level

• Coverage is used to ensure all
targeted verification scenarios are
covered using the right stimulus

• These scenarios are analyzed for—

How many times an event was hit

Correlation between tests run and
event count

Correlation between different
architectural and
microarchitectural events

Ratio between different events

MEASURE – system
functional coverage –

statistical analysis

ENHANCE – Test stimulus, irritators, traffic
generators, coverage, system configuration,

IP configuration

RUN & DEBUG – on
Emulator/FPGA

Bugs!!

Statistical Coverage ➔ Impact on Verification Quality

15 © 2023 Arm

Creating additional stress in the system using Accelerated VIPs

ELP
Core Big

Core Little
Core

DynamIQ Shared
Unit

PCIe traffic using 3rd party IP

Power and DVFS cycling
requests from the SCP

Deadlock & starvation
detectors at different points

Single bit & double bit error injection
in RAMs & bus

Random delays inserted in memory
responses

Random Interrupts to CPU

Traffic on interconnect ports
using an accelerated traffic
generator VIP

Address & response
monitors on the bus to
check violations

Device model to check ordering &
gathering rules

Run on Emulation and FPGA

16 © 2023 Arm

Performance Visibility Relationship

FPGA

Silicon

Emulator

Simulator
V

is
ib

ili
ty

 D
eb

u
g

Performance (Cycles/sec)
x106 x107 x109x105x103 x108x104x102

A
ll

Si
gn

al
s

Li
m

it
ed

 S
ig

n
al

s
N

o
 S

ig
n

al
s

17 © 2023 Arm

Platform Methodology
Validation on Emulators & FPGA boards for speed & capacity

Emulation
Palladium (Z1/Z2) =>
CDNS
Veloce (Strato *) =>
Siemens
Zebu (ZS4/ZS5) =>
SNPS

FPGA prototype
HAPS 100 (SNPS)
Primo (Siemens)

Usage:
In-circuit emulation
Simulation
Acceleration
(predominant use
case in Arm)

18 © 2023 Arm

Emulator configuration

LSF &
Schedule

19 © 2023 Arm

SoC FE – High level Overview
Verification and Validation

Perf/Power
Perf - CME/NGP
Perf Aanalysis IC -
BW/QoS/MPAM
Power Intent
D2D - UCIE

Feature Testing
SMMU –Virtualisation
& Protection
mechanism
Debug
Security
Telemetry
Media pipeline
USB/UFS/DMA

Stress Validation

RIS based stress
Design mutation
Data path stress

Integration
Boot
System Discovery
Memory backplane
Interrupt/MHU
Timer/Wake Up
Cross Chip

Use case

UCA
Wifi/Modem
OS boot

20 © 2023 Arm

Verification Levels Details

© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

	Slide 1: VLSI workshop on System Validation​
	Slide 2: Multi-layered verification strategy
	Slide 3: An example of unit-level verification
	Slide 4: An example of top-level verification
	Slide 5: An example processor subsystem
	Slide 6: Introduction to system level verification
	Slide 7
	Slide 8: Processor as part of a sub-system
	Slide 9: An example processor made of multiple units
	Slide 10: System Verification
	Slide 11: SVRIS Tools
	Slide 12: Types of fails found using the RIS Tools
	Slide 13: OS Based Validation
	Slide 14: System Level Statistical Coverage
	Slide 15: Creating additional stress in the system using Accelerated VIPs
	Slide 16: Performance Visibility Relationship
	Slide 17: Platform Methodology
	Slide 18: Emulator configuration
	Slide 19: SoC FE – High level Overview
	Slide 20: Verification Levels Details
	Slide 21
	Slide 22

