big.LITTLE technology moves towards fully heterogeneous Global Task Scheduling

Brian Jeff
Sr. Product Manager, Mainstream Mobile and High Efficiency Applications Processors
Agenda

- big.LITTLE™ Overview
- big.LITTLE Software
- Measurement of Key Benefits
 - Peak performance and responsiveness in a given power budget
 - Maximum performance within thermal limits of SoC
 - Improved power-efficiency of processing system
- Building a big.LITTLE System
- Demo
What is big.LITTLE Processing?

Power and energy optimization technology
Combines performance- and efficiency-tuned processors
Transparent to application software, shipping today

“Highest Performance Threads”
“All but the highest performance threads”

Increased Performance
Cortex-A9 smartphone | big.LITTLE

Significant Power Saving
Cortex-A9 smartphone | big.LITTLE
(selected use cases)
Coherency allows two CPU clusters to appear as one SMP cluster to the OS

2013: Cortex-A15 + Cortex-A7 in symmetric topologies

2014: Cortex-A57 + Cortex-A53, and others in symmetric and asymmetric topologies
Agenda

- big.LITTLE™ Overview
- big.LITTLE Software
- Measurement of Key Benefits
 - Peak performance and responsiveness in a given power budget
 - Maximum performance within thermal limits of SoC
 - Improved power-efficiency of processing system
- Building a big.LITTLE System
- Demo
big.LITTLE Software Evolution

Cluster Migration

CPU Migration

Global Task Scheduling

big.LITTLE MP

Improving Performance and Efficiency

2012

H1 2013

H2 2013
Global Task Scheduling

1. System starts
 Task fill up the system

2. Demanding Tasks detected
 - Based on amount of time a thread is ready to run (*run queue residency*)
 Moved to a big CPU

3. Task no longer demanding
 Moved to a LITTLE CPU

4. Global load balancer consolidates the workload
Agenda

- big.LITTLE™ Overview
- big.LITTLE Software
- Measurement of Key Benefits
 - Peak performance and responsiveness in a given power budget
 - Maximum performance within thermal limits of SoC
 - Improved power-efficiency of processing system
- Building a big.LITTLE System
- Demo
big.LITTLE Operation

big.LITTLE delivers optimum performance and efficiency in all use cases

1 - Maximum Responsiveness for high-intensity workload
2 - Sustained maximum interactive performance
3 - Long-use low-intensity workload
Responsive Peak Performance

- Peak performance bursts above typical power envelope of the SoC
- Delivering enhanced user experience at a touch
Web Browsing + Audio uses big cores for bursts of performance

LITTLE cores run background tasks, audio, and browser tasks after the main screen render completes

Partner Platform, 4 A15 cores, 4 A7 cores
Bursts of Performance

- Moderately intensive game, it can run predominantly on Cortex-A7 processor
- Cortex-A15 used for short bursts of performance

Partner Platform, 4 A15 cores, 4 A7 cores
Maximum Sustained Performance

- Maximise performance within the sustainable power envelope
- Efficiency of big.LITTLE enables increased performance in SoC
Performance Demands Increasing

- Mobile device performance advancing at ever faster pace
Increased Performance for Threaded Software

Well threaded games can make use of big and LITTLE processors extensively.

Partner Platform, 4 A15 cores, 4 A7 cores
Maximizing Sustained Performance

- **big.LITTLE** enables maximum performance under the thermal envelope for sustained gaming

Power

- Castle Master
- Real Racing 3

- **big.LITTLE**, Rest of SoC
- **big.LITTLE**, CPU
- A15 Only, Rest of SoC
- A15 Only, CPU

Partner Platform, 4 A15 cores, 4 A7 cores
Maximizing Sustained Performance

Continuous play on advanced console-quality gaming challenges thermal limits.

CPU + GPU Utilization

- **Cortex-A15**
 - Castle Master: 76%
 - Real Racing 3: 75%
- **Mali T628**

Power distribution:
- **CPU**
 - Castle Master: 100%
 - Real Racing 3: 0%
- **Rest of SoC**
Delivering Better User Experiences

big.LITTLE reduces sustained SoC power below the thermal limit

- Lower power for potentially longer playing time
- More power budget for GPU and visuals

CPU + GPU Utilization

ARM

Mali T628

Cortex-A15 44%

Cortex-A17 41%

Cortex-A17 43%

Cortex-A17 42%

Castle Master

Real Racing 3

thermal limit
Increased Performance for Threaded Software

All big and LITTLE cores running simultaneously
Capacity Advantage for workloads with >4 threads

Performance Increase vs. Cortex-A15 Standalone

CF-Bench AndEBench Native Antutu v4 Geekbench Quadrant

<=4 threads: No slowdown

Partner Platform, 4 A15 cores, 4 A7 cores
Most Efficient Processing

- Maximise energy efficiency with LITTLE processor for typical workloads
- Extended device lifetime with the most efficient A-Class processor
Casual Games reside entirely on Cortex®-A7 processors, except for drawing of initial screens and App launch.
Low Intensity Use Cases

-76% -76% -73% -42% -73%

Significant power reduction at CPU level

Partner Platform, 4 A15 cores, 4 A7 cores
Low Intensity Use Cases

Savings are still significant at SoC level

Partner Platform, 4 A15 cores, 4 A7 cores
Agenda

- big.LITTLE™ Overview
- big.LITTLE Software
- Measurement of Key Benefits
 - Peak performance and responsiveness in a given power budget
 - Maximum performance within thermal limits of SoC
 - Improved power-efficiency of processing system
- Building a big.LITTLE System
- Demo
Integrating an Efficient System

CoreLink™ CCI-400
Cache Coherent Interconnect

- Display and Video Sub-system
- GIC-400 Interrupt Control
- Cortex-A15
 - L2 cache
- Cortex-A7
 - L2 Cache
- Mali- T628 GPU
 - Shader
 - Shader
 - Shader
- ADB-400
- MMU-400
- DMC
- DDR/LPDDR
- To Peripheral Interconnect

- CPU Cluster and IO Coherent GPU
- ACE Coherency enables big.LITTLE and GPU compute
- Efficient Voltage scaling for power management
- Common memory view for all SoC components
- Path to memory with Trustzone hardware security
Global Task Scheduling

- ARM implementation: “big.LITTLE MP”
 - Mobile optimised
 - Hosted openly in the Linaro Stable Kernel (LSK) and as a kernel patch set

Power Scheduler:
- Longer term effort to put global task task scheduling in Linux upstream kernel
- Still under development
 - Follow the discussion: https://lkml.org/lkml/2013/7/9/314

CPU Migration

- Linaro “In-Kernel Switcher”
 - Available Now: http://www.linaro.org/linaro-blog/2013/05/02/the-linaro-iks-code-now-publicly-available
Scalable Technologies for SoCs

ARM big.LITTLE
Processor Technology

Mali-T678
Mali-T628
Mali-T624
Mali-T622
Mali-V500
Mali-450
Mali-400
Mali-300

ARM Mali
Visual Computing

ARM Cortex
Processor Technology

Cortex-A57
Cortex-A53
Cortex-A15
Cortex-A9
Cortex-A7
Cortex-A5
Cortex-R7
Cortex-R5
Cortex-R4
Cortex-M4
Cortex-M3
Cortex-M0

ARM CoreLink
Processor System IP

Coherent System IP

ARM Artisan
Physical IP

Physical IP
big.LITTLE SoCs

- Initial big.LITTLE SoCs now in silicon
- 10+ licensees in various stages of development
- Rapid advancement in software and system optimization
Demo

ARM® big.LITTLE™
Processor Technology

ARM® M8L™
Visual Computing

ARM® CORTEX®
Processor Technology
big

LITTLE
Summary

big.LITTLE delivering on key benefits
- Significantly higher peak performance within a tighter power budget
- Improved SoC performance under thermal constraints
- Power savings across a range of workloads and use scenarios
- Performance and efficiency increase on threaded workloads

big.LITTLE technology is shipping in products today
- Wider range of differentiated solutions from silicon partners

Devices transitioning to more advanced big.LITTLE
- Demonstrated additional benefit from global task scheduling
- Global task scheduling available for production platforms
Brian Jeff
Sr. Product Manager, Mainstream Mobile and High Efficiency Applications Processors
brian.jeff@arm.com