life.augmented

NanoEdge Al Studio

~ Your fast track to smart products

Yijun DENG
APAC Al Competence Center

A0 2022 NANOEDGE Al @
)

STUDIO

1 Introduction to NanoEdge Al Studio

2 NanoEdge Al step by step

Machine Learning

e Can be divided into:

« Supervised learning: machine learning algorithm which learns a function that maps
an input to an output based on example input-output pairs. E.g., Decision Tree,
Support Vector Machine, Linear Regression, Deep Learning, ...

« Unsupervised learning: machine learning algorithm which learns unknown patterns
from un-labeled data. E.g., Clustering, K-Means, ...

! []
F 8 -
] [] L] -
\. x I' . - . 'I_ ".'I- . -.__1-.-‘
kK xx x x x i ® ® e ® _|I \x‘ ® . ® L I k
i ! 4 v
-_.r"-\"-____ x x x -'q,l‘ . . .-I "'.\ .‘ [] ' .)
‘-L-L-"\-w_ x -\H-\._‘_ .---.r"'-___ o -\'-\.__-_-\- ' . 1I
\-‘-"'..___.. x T -I_-'F. ' .q--\-'\-\.‘_ -H'-_“_ . I.
-\."'-._ lr-" . - .
e ®
P i L P L
Supervised learning Unsupervised learning

Kys 4

life.augmented

Classification vs Regression

« Supervised learning contains mainly 2 categories:
 Classification: algorithm to predict a discrete class label
« Regression: algorithm to predict a continuous quantity

1 1 1 L L L L
20 20 40 50 60 70 BO 920 100

‘,’ Classification Regression 5

life.augmented

Introduction to NanoEdge Al Studio

NanoEdge Al Studio

NanoEdge Al Studio, an automated ML design solution

NANOEDGE Al
STUDIO

Generate ultra optimized ML library for any

w STM32
e
| | ML Model benchmark to speed up your

_ development time

State of the art of ML implemented
continuously: no specific Al skills needed

NanoEdgeAl Studio
For customers without Al expertise

1 Create the library, ONCE e Use the library, MANY

.oo

Create and embed a self learning engine m ' E; :
THT I:I

For anomaly detection, the model is
self-trained at the Edge

Standalone PC (Win/Linux) solution

WORSER

Create a state-of-the-art Al solution
In a simple, fast, and affordable way

3 x savingsin $
and 2 times faster

1 to 16Kb of RAM

= < 10Kb Flash
_:@ Zero Cloud

| dependency

Your developers

can use it now.
No data set
required

NANOEDGE Al @

STUDIO

Kys 10

life.augmented

NanoEdge Al Studio V3: New User Interface
More Functions, Better User Experience

New families of Machine New Datalogging
Learning algorithms experience

NANOEDGE Al @iz /3
sTupio I©

Anomaly 1-Class n-Class

Extrapolation Datalogger
Detection Classification Classification HLrap 99

Ca ~
=
ProjedR021-11-24-14-42-44 w . .
Get inspired by
Multiple uses cases
Project2021-11-24-14-42-23 ®
S Tk (o)
Project2021-11-24-10-22-17 ® ling needsiof a bulkding
D
B == <)
Project2021-11-19-14-19 |0
G

NANOEDGE Al 11
STUDIO

life.augmented

Our Customers Have Increasingly Ambitious Use Cases

Anomaly
Detection

1C

1-Class
Classification

n-Class
Classification

E

Extrapolation

For Ever More Smart Products

"My pumps are installed in a variety of environments that | can't anticipate.
| want them to autonomously adapt to their target environment and detect anomalies by
themselves."

"I know exactly how my pumps behave.
| want to detect any outliers."”

"l know the signals when a pump is experiencing, for example, ball bearing or cavitation problems.
I want to know by name what problems are occurring.”

“I know several vibration values of my machine.
| want to anticipate when a specific vibration level will be reached so that | have time to take
corrective actions before reaching that limit.”

NANOEDGE Al 12
STUDIO

Step 1 (PC Side)
Creation of an
ANOMALY DETECTION
Machine Learning library

Step 2 (MCU Side)

Use of an

ANOMALY DETECTION
Machine Learning library

NANOEDGE Al 13
STUDIO

Step 1 (PC Side) Step 2 (MCU Side)
Creation of Use of a
ONE CLASS CLASSIFICATION ONE CLASS CLASSIFICATION
Machine Learning library Machine Learning library

Embedded
Static

ML library Model

Normal
Condition = : — D
Signal ===

LS - ——

NANOEDGE Al 14
STUDIO

Step 1 (PC Side) Step 2 (MCU Side)
Creation of an Use of an
n CLASS CLASSIFICATION n CLASS CLASSIFICATION
Machine Learning library Machine Learning library

Bearing problem
Misalignment 0%
Cavitation 3%

Shaft Imbalance 7%

ML library

I
1
1
1
1
1
1
1
: Bearing 90%
1
1
1
1
1
1
1
1
[

v ‘ D
Cavitation = 3

Problem
Signals

S—

Shaft imbalance
Problem signals

’I NANOEDGE Al 15

life.augmented STU DIO

Step 1 (PC Side) Step 2 (MCU Side)
Creation of an Use of an
EXTRAPOLATION EXTRAPOLATION
Machine Learning library Machine Learning library

SPEED 10% Vibration level 87%

_ Vibration level 65%
Signals

Vibration level 25%

1
1

1

1

1

1

1

i

: Vibration level 80%
1

:

: Vibration level 10%
1

1

1

SPEED 25% ML library
Signals

v ; D Extrapolation
SPEED 65% i b

1
1
1
L

Signals

SPEED 80%
Signals

NANOEDGE Al 16
life.augmented STU DIO

From Idea To Datalogging
NEW In A Matter Of Minutes

— NANOEDGEAI Q)
A = Sropio @ ¥3

« Streamlined data logging process
* No code
 All settings done using a graphic interface

Datalogger

Connect your STWIN

STEVAL-STWINKT1B r) ‘7‘

v

The STWIN SensorTile wireless industrial node (

) is a development kit and reference design
that simplifies prototyping and testing of advanced
industrial 0T applications such as condition
monitoring and predictive maintenance

The kit features a core system board
with a range of embedded industrial-
grade sensors and an ultra-low-power
microcontroller

"I NANOEDGE Al 17

life.augmented STU DIO

https://www.st.com/en/evaluation-tools/steval-stwinkt1b.html

Typical use case
iIndustrial motor monitoring

Any parameter deviation is an indicator of potential failure

Functions to enable monitoring

Mechanical - L M '
vibration A‘ Vibration
, g ’ Capture
* Displacement ‘ ‘ m
* Speed : Connectivity
. Acceleratlor] Imbalance Losses | Output shaft Gear Mesh
 Acoustic noise
* Angular speed J -
* Torque Processing
'I"I' > Secure
t Connections

‘,[19

life.augmented

Demo
Motor Control with NanoEdge Al

= s
Anomaly DetcttE=s

E — =\
NANOEDGE Al —
NAR sTUDIO e

@ =

’I . - - 20

life.augmented

Creating new project

Suppose we want to detect anomaly of an electric motor based on current signal

NANOEDGE Al an -
swnm@ v3.0.1

Anomaly 1-Class

n-Class

i laccificab e Extrapolation Datalogger
Detection Classification Classification

Anomaly Detection:

Use case: detecting anomalies in data using a dynamic model.

User input: signal examples representing both nominal states and abnormal states (used for library selection only).
Studio output: untrained anomaly detection library that will learn incrementally, directly on the target microcontroller.

Gearbox Fault Diagnosis (<]

22
life.augmented

Predict when your gear box will require new teett

Project settings

In “Project settings”, fill basic information of the project

Project settings Regular signals Abnormal signals Deployment

5TM32G4 iles ile 0 Benchmark
12kB RAM
1 axis

FanClogging 12 kB

@ STM3204 v Current sensor -
‘, f 23

life.augmented

Project settings

List of supported sensor types in NanoEdge Al

Generic 8 Axes

Current sensor

Some typical sensor types are supported Microphone sensor

Also possible to combine different sensor Accelerometer 1 axis

types in the same input thanks to “Generic”

Accelerometer 2 axes

type.
yp Accelerometer 3 axes

Hall sensor 1 axis
Hall sensor 2 axes

Hall sensor 3 axes

‘,’ Multi-sensor Y

life.augmented

Adding signals

Adding signals for both “Regular” and “Abnormal” conditions

Deployment

Regular signals Abnormal signals Benchmark Emulator

Project settings

STM32G4 0 Files 0 Files 0 Benchmark

12kB RAM

1 axis

Data format example:
n buffers of 256 values x 3 axes (x,y,z) with space separator

line 1 XO yﬂ ZO X y7 Z () X;;;y?;s Z?S%

Kys 25

life.augmented

Adding signals

3 possible types of signal sources: “From file”, “From Datalogger”, “From Serial (USB)”

o Type of signal source

Import signal

o © =i I - .. ,

Number of values per line: 128

Select your signal source type

Check for RAM

OM DATALOGGER (.DAT) 8 FROM SERIA JSB) B File not empky
Numeric values only
Check for empty lines

Check for maximum line length

CQRORO ®

Check for minimum lines

LOSE RUN OPTIONAL CHECKS
CLOS

life.augmented

Select source type Check imported signals

26

Benchmarking of NanoEdge Al Library

Run benchmark to generate an Al model which best fit the provided signals

Anomaly detection > FanClogging New Benchmark

Project settings Regular signals Abnormal signals Benchmark Emulator Deployment
Regular signals Abnormal signals Axis1 B
STM32G4 0Benchmark Regular signals Abnormal signals
12kB RAM @ 'EngE' @ abnorma |
1 axis]]
2.000e+6 1 2.000e+6
RUN NEW _ _
BENCHMARK 1.500e+6 7% 1.500e+6 4
Click the button on the left to create a new benchmark
1.000e+6 b 1.000e+6 b
5.000e+5 5.000e+5
N L L N
0 2040608010020 0 2040608010020

Number of CPU cores to use for benchmark:

Choose signals and
number of CPU
Core for be nCh mark Your processor has 8 cores and you can use up to 6 cores for benchmarking.

Run new benchmark

0
o

CANCEL START

Lys

life.augmented

27

Benchmarking of NanoEdge Al Library

We can monitor different metrics of the current best model during the process of benchmark

Project settings Regular signals Abnormal signals n Deploymenk

STM32G4 1 Benchmark

oS R histat: Number of lib tested
& Time consumed

‘ RUN NEV \ SEB.iE 28/06/2022 16:34:11- Thread 0: Total evals: 26 | 2.36 eval/s
PI’OQI’GSS LEUE L 99.60% 28/06/2022 16:34:13- Thread 5: Total evals: 29 | 2.64 eval/s
:

STOP

BALANCED ACCURACY RAM
100.00% 1.3kB
[57.57% ; 100.00%] + Buffer 0.6kB

Il Bzlanced accuracy [Score [RAV [Flash

100 9
100 90 8
Score N A S AR A A S A A AR A 5 80 ,
g
Accuracy L g " 5
£ L =
£ & 60 5 £
= © T
RAM ;@ P
lash : i
FaS % 40 % 30 3=
= . 8 20 2
10 1
0 0

o

‘,’ Graphical view 28

life.augmented

Benchmarking of NanoEdge Al Library

After the benchmark, the recommended minimum learning iterations will appear

% score of similarity

Lys

life.augmented

100

[a=]
=

[=2]
=]

.
[==]

[~
=

(=]

BALANCED ACCURACY
100.00%

RAM
0.1kB
+ Buffer 0.6kB

Result

3 0 iterations*

Click here to see
used libraries

Filter: Deactivated

* Minimum learn() function callgecommended For efficient learning

Minimum number of
learning iterations on
MCU to obtain optimal

performance

29

Validating the library by emulator

NanoEdge Al provides emulator to test the Al library without creating any embedded software.

Project settings Regular signals Abnormal signals Deployment

STM32G4 1 Benchmark
12kB RAM
1 axis

Initialization Learning
C:\Users\dengyiju\OneDrive - STMicroelectro... Signals
learned
< Preview of 20 first lines > Define
0O
nb_columns 1 2 3 4 5 _
1:128 1578400 | 1332000 | 1157600 | 1466400 | 1950400 | 11
2:128 1363200 | 1097600 | 1422400 | 1959200 | 1156800 | 14
3:128 1449600 | 1424800 | 1947200 | 1798400 | 814400 |17
4:128 | 1535200 2036800 | 1614400 | 941600 | 1752800 |21 .o -

5:128 1682400 | 1846400 | 848800 | 1773600 | 2013600 | 14

"I 6:128 1413600 | 1128800 | 1440000 | 2080800 | 1628800 | 6€
30

life.augmented

Validating the library by emulator

Go to detection after learning minimum number of normal signals

o Initialization o Learning o Detection

Select signal file

for detection or
detect in real-time C:\Users\dengyiju\OneDrive - STMicroelectro... 60
from serial USB

< Preview of 20 first lines > Signals learned
Define lines tc

nb_columns 1 2 3 4 5 detect

1:128 1578400 | 1332000 | 1157600 | 1466400 | 1950400

2:128 1363200 | 1097600 | 1422400 | 1959200 | 1156800
File Repartition Total Repartition
Regular signals o -

O

Results of detection o 120 Abnormalsignals
1

Ly 5

life.augmented

Validating the library by emulator

We can also test in real-time the signals received from serial USB

Initialization Learning Detection Initialization Learning Detection

. - 100 . 100

Signals learned Signals learned

800.00 2304800.00 1538400.00 2256800.00 2111200.00 o
Similarity

1952800.00 1476000.00

— Serial output I 1 OO% — Serial output 3 5% Sirnilarit;-‘
1960800.00 2256800 00.00 22568 0 2111200.00 2039200.00 19952 563200.00 22 0 2028800.00 1689600.00
1823200.0

Similarity > threshold (e.g. 90%) => Normal
17

Similarity < threshold (e.g. 90%) => Abnormal

32

life.augmented

Deployment of NanoEdge Al library

After the library being validated, we can go to “Deployment” and compile the model into C library

Project settings Regular signals Abnormal signals Deployment

STM32G4 ile 13 1 Benchmark
12kB RAM

Compilation Flags

Specifying soft causes GCC to generate output contai calls fFor floating-point operations. "hard" allows

life.augmented

Integration of NanoEdge Al library

Finally, we can integrate the Al model into embedded software

Name Size Packed Si... Modified
docs 260916 260916

Generated files after emulators 496 616 496 616 Libneai.a: The static C library of Al model
“Compile Library’ Clibnesia NP, \110E AL h: The header file with all APIs
D metadata.json 2203 2203 2022-02-..

) NanoEdgeAlh 2923 2923 2022-02-...

/* Function prototypes */

#ifdef cplusplus

extern "C" {

fendif

. enum neai state neai anomalydetection init(void);

The AP'S in enum neai:state neai:anomalydetection:learn(float data input[]);

NanOEdgeAl h enum nea% state neai anomalydetect%on_detect(f}ogt.data_input[] , lu%nicB_t *similarity);

. enum neal state neal anomalydetection set sensitivity(float sensitivity);

float neai anomalydetection get sensitivity(void);

#ifdef cplusplus

}

fendif

‘,[34

life.augmented

Integration of NanoEdge Al library

Example codes to implement an anomaly detection library generated by NanoEdge Al Studio

#include "NanoEdgeAI.h"

#define SIGNAL LENGTH 128 // Signal length
#define LEARNING NUMBER 30 // Minimum number of learning

float sample buffer[DATA INPUT LENGTH];
uint8 t similarity:

S . . /* Initialize NanoEdge AI library */
Initialization of the library neai_ anomalydetection init ()

/* Learn 30 nominal signals */

for (int i = 0; i < LEARNING NUMBER; i ++) {
1Ni // Get one sample and fill in the buffer
Learn mlnlmum number Of fill buffer(sample buffer);
normal signals // Learn the sample

neai anomalydetection learn(sample buffer);

}

/* Detection phase */

while (1) {
// Get one sample and fill in the buffer
fill buffer(sample buffer);

// Detect the sample
- i lydetecti detect le buffer, &similarity);
Continuously detect anomaly sl dnomaljetection detect (sample buffer, einilarity
0.9) {
T

if (similarity > 0.9

printf ("The motor is in normal state!\n"):;
}
else {
‘,’ } printf("The motor is in abnormal state!\n");: 35

life.augmented }

7

life.aqugmented

Our technology
starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. ‘
For additional information about ST trademarks, please refer to .

All other product or service names are the property of their respective owners.

life.augmented

http://www.st.com/trademarks

