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Essentials of the CHERI architecture in one slide 
• CPU architecture adds 128-bit “capabilities”

• Capability contains the address, bounds information, permission information etc
• Loads/stores using capabilities as addresses are checked to be legal 

▪ Within address range and matching the supplied permissions
• Data processing on capabilities has rules to limit operations

▪ Bounds cannot be arbitrarily increased, permissions cannot be relaxed etc

• A memory tagging bit is added as metadata that distinguishes a capability from 
normal data

▪ This memory tagging bit prevents “forging” of a capability 

▪ This functionality gives strong provenance of capabilities

• Capability is used in place of a normal pointer in some or all situations
• Exactly how when this happens is part of the software usage case
• Simply replacing all pointers with capabilities gives scope for strong spatial memory 

protection
▪ But clearly is an ABI change and increases cache pressure
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Why is Arm interested in the CHERI architecture 

• Arm has been working with UoCambridge on CHERI for some 4-5 years

• Big step to addressing security based on strong fundamental principles

• Addresses spatial memory safety robustly and some ideas for temporal safety 
• Memory safety issues reported to be involved with ~70% of vulnerabilities (Matt Miller, BlueHat IL, 2019)

• Has scope to be the foundation of a new mechanism for compartmentalisation
• Potentially far cheaper than using translation tables

• Interesting scope to address temporal safety issues as well as spatial ones….

• Many of the Arm software vendors are similarly interested in the possibilities of CHERI
• Microsoft, Google and others have expressed strong interest in exploring the concept…
• … but lots of questions about the real-world performance costs and usage models
• …understanding the intended usage models is important to refine the architectural features 

• But is a novel thing to do with additional costs to the system and software
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Performance effects of CHERI ?

• Spatial memory safety involves replacing some/all of the pointer with capabilities
• 128-bit items in place of 64-bit items hits the effective cache size to an unknown degree
• Are all pointers replaced by capabilities or just some of them (esp for Java/Javascript)

• How are the tags held in memory?
• 129th bit (similar to ECC) or by carving out a separate area of memory 
• Do I need a tag-cache to hold the tag bits, is it hierarchical, what size is it etc etc

• What is the performance implications for using CHERI for compartmentalisation?
• Can I measure the improved performance from doing this vs (ab)using the process model 
• If I have more lightweight compartmentalisation, how do I segment my software efficiently

– What is the performance effects of doing this? 

• What is the performance cost of using CHERI for temporal memory safety?

• How do any of these benefits compare for real performance vs today’s established ways
• Is the benefit worth the effort? 
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The Morello Board 
• An Industrial Demonstrator of a Capability architecture

• Uses a prototype capability extension to the Arm Architecture
• Prototype is a “superset” of what could be adopted into the Arm architecture

• Use of a superset of the architecture is very unusual
• Also unrealistic as a commercial product – there will be some frequency effects
• However, there are tight timescales so architecture is nearly complete now

• The superset of the architecture will allow a lot of software experimentation
• Various different mechanisms for compartmentalisation
• Collection of features for which the justification is unclear 
• Techniques for holding the capability tag bit

• Architecture will have formally proved security properties (with UoC and UoE) 

• Morello Board will be the ONLY physical implementation of this prototype architecture
• Learnings from these experiments will be adopted into a mainstream extension to the Arm architecture
• NO COMMITMENT TO FULL BINARY COMPATIBILITY TO THE PROTOTYPE ARCHITECTURE

– But successful concepts are expected to be carried forward into the architecture and can be reused there 
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Morello Board overview

• Quad core bespoke high-end CPU with prototype capability extensions 
• Backwards compatibility with v8.2 AArch64-only
• Based on Neoverse N1 core 

– Multi-issue out-of-order superscalar core with 3 levels of cache

• Build in 7nm process 
• Targeting clock frequency around 2GHz

• Reasonable performance GPU and Display controller
• Standard Mali architecture core – not extended with capability
• Supports Android 

• PCIe and CCIx interfaces including to FPGA based accelerators

• FPGA for peripheral expansion 

• SBSA compliant system 

• 16GB of System Memory (expandable to 32GB – tbc) 
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Morello SoC (WIP)

• Display processor
• Single display output
• Digital 8:8:8 RGB Output
• UXGA60 : 1600 x 1200

• Mid-range GPU
• Single shader
• 256KByte L2

• SODIMM DDR4 3200 x2 
(72pin)

• 51.2 GBytes/s

• Modifications to ECC to 
store capability bit

• SCP & MCP System 
control including boot 

• High-end PCIe 
configuration

• x16 PCIe CCIX 
enabled

• x16 PCIe IO
• Can’t carry 

capability tags  

• Thin Links to 
FPGA

• Facilitates a 
broader set of 
IO not 
contained 
within the SoC 
itself 

• Quad Arm core 
with capabilities

• L1/L2 cache 
modifications to 
proliferate 
capability bit 



8 2019 Arm Limited

Software and Tools on Morello Platform

• Initial toolchain development is focussed on the LLVM toolchain (including LLDB) 

• GNU tools being developed as a secondary activity

• Initial OS focus is     FreeBSD (developed with UoCambridge), Android

• Secondary focus: Windows PE, Yocto (Linux Distribution for IoT) , 

• Tertiary focus: Debian, RedHat Fedora, SuSE Tumbleweed, 
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Timescales

• October 2020:

• Virtual Platform Model of Morello board   (behavioural software model)

• Architecture Specification of the CPU architecture used in the Morello board

– This will include XML and Pseudo-code to allow formal proofs and other auto-generated collateral 

• December 2021 

• Morello boards made available with initial software and toolchains
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What do we want to get from this…

• Answers to the performance questions for a wide range of different usage models

• Compelling examples of Capabilities offering a security/performance improvements
• Backed up by “Red-teams” having attacked the system and demonstrated security of the system
• Compelling in comparison with existing deployed state of the art approaches

• Understanding of how different languages and run-times can use capabilities
• Not just C and C++, but also Javascript, Java 

• Far better understanding of how fine-grained compartmentalisation can be used 

• A showcase to encourage other architectures to adopt capabilities 

• Experience of what the right SoC hardware is for building capabilities 

• An architectural approach with formally proven security properties 

=> What to put into the Arm architecture to support Capabilities in the future



Questions?
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Introduction

• We will …

• Briefly review the CHERI architectural primitives

• Discuss CHERI’s application to ARMv8-A in Morello

• Describe our Morello-adapted CHERI prototype software stack

• Identify potential future research directions building on CHERI and Morello

• To learn more about the CHERI architecture and prototypes:

http://www.cheri-cpu.org/

• Watson, Moore, Sewell, and Neumann. An Introduction to CHERI, UCAM-
CL-TR-941, September 2019.
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What is CHERI?
• SRI + Cambridge over 10 years + 3 DARPA programs (~$26M), EPSRC 

(£7.4M); Innovate (£2.7M); Google / DeepMind / Arm / HPE … (~£1M)

• CHERI is an architectural protection model

• Composes a capability-system model with hardware and software

• Adds new security primitives to Instruction-Set Architectures (ISAs)

• Implemented by microarchitectural extensions to the CPU/SoC

• Enables new security behavior in software

• CHERI mitigates vulnerabilities in C/C++ Trusted Computing Bases

• Hypervisors, operating systems, language runtimes, browsers, ….

• Fine-grained memory protection, scalable compartmentalization

• Directly impedes common exploit-chain tools used by attackers

• Mitigates many vulnerability classes .. even unknown future classes
4

An early experimental FPGA-based 

CHERI tablet prototype running the 

CheriBSD operating system and 

applications, Cambridge, 2013



Hardware-software-semantics co-design
• Architectural mitigation for C/C++ TCB vulnerabilities

• Tagged memory, new hardware capability data type

• Model hybridizes cleanly with contemporary RISC ISAs, CPU designs, 
MMU-based OSes, and C/C++-language software

• New hardware enables incremental software deployment

• Hardware-software-semantics co-design

• CHERI abstract protection model; concrete ISA instantiations in 64-bit 
MIPS, 32/64-bit RISC-V, 64-bit ARMv8-A

• Formal ISA models, Qemu-CHERI, and multiple FPGA prototypes

• Formal proofs that ISA security properties are met, automatic testing

• CHERI Clang/LLVM/LLD, CheriBSD, C/C++-language applications

• Repeated iteration to improve {performance, security, compatibility, ..}
5



CHERI research and development timeline

Years 1-2: Research platform, prototype architecture

Years 2-4: Hybrid C/OS model, compartment model

Years 4-7: Efficiency, CheriABI/C/C++/linker, ARMv8-A

Years 8-10:  RISC-V, temporal safety, formal proof
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April 2013: multi-

FPGA CheriCloud

2011 2012 2013 2014

Jul. 2012: LLVM 

generates 

CHERI code Dec. 2013: 

CheriBSD 

CCall 

exception
Jan. 2014: 

CheriBSD + 

CHERI LLVM

Jun. 2012: 

CheriBSD capability 

context switching

Nov. 2012: 

Sandboxed code on 

CheriBSD; live 

FPGA-base Trojan 

mitigation demo

Oct. 2011: Capability 

microkernel runs 

sandbox on FPGA
Sandbox 0: drawing application

~140 lines of conventional C code

compiled to 64-bit MIPS

Sandbox 1: footer bar

~90 lines of conventional C code 

compiled to 64-bit MIPS

Deimos microkernel

~1800 lines of conventional C code compiled to 64-bit MIPS:

trusted path, device drivers, diagnostics

~700 lines of CHERI-specifi c C code:

capability management, context switching

~450 lines of MIPS and CHERI ISA  assembly:

bootstrap, exception handling, capability management

CHERI prototype

~10,500 lines of Bluespec

Sandboxed user library code

~600 lines of conventional C code compiled to 64-bit MIPS:

memcpy, memset, strlen, printf, framebuf fer, touch screen

~40 lines of inline MIPS and CHERI assembly:

framebuffer, touch screen

May 2012:  

Capabilities/MMU in 

ISA + FPGA, FreeBSD 

OS boots on prototype

Nov. 2011: 

FPGA tablet + 

CHERI-specific 

microkernel

Oct: 2010: 

CTSRD project 

begins work

Jul. 2014: Merged 

capabilities and fat 

pointers; ISA + 

FPGA prototype

2015

Nov. 2014: tcpdump + 

multiple per-packet 

domain switches demo

ISCA 2014:

Hybrid MMU/capability 

model + architecture

ASPLOS 2015: 

C-language 

compatibility

ACM CCS 2015: 

Program analysis, 

compartmentalization

Jun. 2015: 

128-bit LLVM 

and CheriBSD

RESoLVE 2012:

Hybrid MMU/

capability model

LAW 2010: 

Capabilities 

revisited

Sep. 2015: CheriABI

pure-capability POSIX 

process environment

IEEE S&P 2015:

Operating systems, 

compartmentalization

2016

Nov. 2015:

CHERI ISAv4 - 

128-bit caps, 

fast domain-

switching 

instructions

Jun. 2015: 128-bit 

“candidate 3” ISA + 

FPGA prototype

PLDI 2016:

CHERI C-language 

formal semantics

Jul. 2016: CHERI 

run-time linker, CFI 

for dynamic linking

Jun. 2016: 

CHERI ISAv5 - 

mature 

CHERI-128, 

code efficiency 

improvements

Jul. 2010: 

CTSRD 

proposal 

submitted

Sep. 2014: MIT LL red-

team live Heartbleed 

mitigation demo

Apr. 2016: CHERI Microkernel 

Workshop with ARM, Broadcom, 

Cambridge, ETH Zurich, GWU, 

HPE, Oracle, SRI

2017

IEEE Micro Journal:

Fast ISA-supported 

domain switching

2018 2019

Sep. 2019: ISCF DSbD 

experimental CHERI-ARM 

CPU, SoC, and board 

announced: “Morello”

MICRO 2019:

Temporal memory-

safety feasibility study

ASPLOS 2019:

Pure-capability

UNIX userspace

Jun. 2019:

CHERI ISAv7 - 

formal semantics, 

CHERI concentrate, 

architecture 

neutrality, temporal 

safety, RISC-V

IEEE TCS 2019:

Compressed 

capabilities

POPL 2019:

C pointer 

provenance

ICCD 2018:

CheriRTOS,

32-bit ISAs

ICCD 2017:

Efficient tagged 

memory

ASPLOS 2017:

CHERI-JNI

April 2017:

CHERI ISAv6

Kernel compartments, 

tag reconstruction, 

efficiency, other ISA 

sketches

July 2019: 

CheriBSD 

temporal 

memory safety

June 2019:

CHERI RISC-V 

microcontroller with 

CheriFreeRTOS

2020

Sep. 2020: Arm to 

release Morello 

specification and 

ISA-level 

executable

 

Sep./Oct. 2020: SRI/

Cambridge, Arm, 

and Linaro to open 

source Morello 

software stack

Nov 2021. 

Arm to ship 

experimental 

Morello CPU, 

SoC, and 

board

IEEE S&P 2020:

Cornucopia temporal 

memory safety

IEEE S&P 2020:

CHERI ISA modeling 

and formal proof

Jun. 2020:

CHERI C/C++ 

Programming Guide

Sep. 2019:

Introduction to 

CHERI

2021

SRI/Cambridge collaboration with Arm to develop CHERI adaptation of 

ARMv8-A + port of the CHERI software stack



CHERI PROTECTION MODEL

AND ARCHITECTURE
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CHERI design goals and approach

• De-conflate memory virtualization and protection

• Memory Management Units (MMUs) protect by location (address)

• CHERI protects existing references (pointers) to code, data, objects

• Reusing existing pointer indirection avoids adding new architectural 
table lookups

• Architectural mechanism that enforces software policies

• Language-based properties – e.g., referential, spatial, and temporal 
integrity (C/C++ compiler, linkers, OS model, runtime, …)

• New software abstractions – e.g., software compartmentalization 
(confined objects for in-address-space isolation, …)

8



CHERI 128-bit capabilities
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CHERI capabilities extend pointers with:

• Tags protect capabilities in registers and memory

• Dereferencing an untagged capability throws an exception

• In-memory overwrite automatically clears capability tag

• Bounds limit range of address space accessible via pointer

• Floating-point compressed 64-bit lower and upper bounds

• Strengthens larger allocation alignment requirements

• Out-of-bounds pointer support essential to C-language compatibility

• Permissions limit operations – e.g., load, store, fetch

• Sealing: immutable, non-dereferenceable capabilities – used for non-monotonic transitions



$pcc

$c4

$c3

$c31

v

v

-

v

GPRs extended to 129 bits

Merged capability register file + tagged memory
(as found in Morello and CHERI-RISC-V; MIPS used a split register file)

• 64-bit general-purpose registers (GPRs) are extended with 64 bits of metadata and a 1-bit validity tag

• Program counter (PC) is extended to be the program-counter capability ($PCC)

• Default data capability ($DDC) constrains legacy integer-relative ISA load and store instructions

• Tagged memory protects capability-sized and -aligned words in DRAM by adding a 1-bit validity tag

• Various system mechanisms are extended (e.g., capability-instruction enable control register, new TLB/PTE 
permission bits, exception code extensions, saved exception stack pointers and vectors become capabilities, etc.)

10

General-purpose register file (GPRs)

$ra

$a1

$a0

$pc

vDDC

vEPCC

Control and 

status registers 

(CSRs)

Physical memory

dd

vCapability

Capability width

-

1-bit tags 

added to 

DRAM



CHERI ISA refinement over 10 years
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Year Version Description

2010-2012 ISAv1
RISC capability-system model w/64-bit MIPS

Capability registers, tagged memory

Guarded manipulation of registers

2012 ISAv2
Extended tagging to capability registers

Capability-aware exception handling

Boots an MMU-based OS with CHERI support

2014 ISAv3
Fat pointers + capabilities, compiler support

Instructions to optimize hybrid code

Sealed capabilities, CCall/CReturn

2015 ISAv4

MMU-CHERI integration (TLB permissions)

ISA support for compressed 128-bit capabilities

HW-accelerated domain switching

Multicore instructions: full suite of LL/SC variants

2016 ISAv5
CHERI-128 compressed capability model

Improved generated code efficiency

Initial in-kernel privilege limitations

2017 ISAv6

Mature kernel privilege limitations

Further generated code efficiency

Architectural portability: CHERI-x86, CHERI-RISC-V sketches

Exception-free domain transition

2019 ISAv7

Architectural performance optimization for C++ applications

Microarchitectural side-channel resistance features

Architecture-neutral CHERI protection model

All instruction pseudocode from a formal model

CHERI Concentrate capability compression

Improved C-language support, dynamic linking, sentry capabilities

Elaborated CHERI-RISC-V ISA

64-bit capabilities for 32-bit architectures

Accelerated tag operations for temporal memory safety

Expected

2020Q3/4
ISAv8

MMU temporal memory-safety assist; e.g., capability dirty bit

Optimizations for sentry capabilities

CHERI-RISC-V privileged support, general maturity

Further C-language semantics improvements
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CHERI ISA refinement over 10 years
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Year Version Description

2010-2012 ISAv1
RISC capability-system model w/64-bit MIPS

Capability registers, tagged memory

Guarded manipulation of registers

2012 ISAv2
Extended tagging to capability registers

Capability-aware exception handling

Boots an MMU-based OS with CHERI support

2014 ISAv3
Fat pointers + capabilities, compiler support

Instructions to optimize hybrid code

Sealed capabilities, CCall/CReturn

2015 ISAv4

MMU-CHERI integration (TLB permissions)

ISA support for compressed 128-bit capabilities

HW-accelerated domain switching

Multicore instructions: full suite of LL/SC variants

2016 ISAv5
CHERI-128 compressed capability model

Improved generated code efficiency

Initial in-kernel privilege limitations

2017 ISAv6

Mature kernel privilege limitations

Further generated code efficiency

Architectural portability: CHERI-x86, CHERI-RISC-V sketches

Exception-free domain transition

2019 ISAv7

Architectural performance optimization for C++ applications

Microarchitectural side-channel resistance features

Architecture-neutral CHERI protection model

All instruction pseudocode from a formal model

CHERI Concentrate capability compression

Improved C-language support, dynamic linking, sentry capabilities

Elaborated CHERI-RISC-V ISA

64-bit capabilities for 32-bit architectures

Accelerated tag operations for temporal memory safety

Expected

2020Q3/4
ISAv8

MMU temporal memory-safety assist; e.g., capability dirty bit

Optimizations for sentry capabilities

CHERI-RISC-V privileged support, general maturity

Further C-language semantics improvements

C
ap

ab
ilitie

s +
 R

IS
C

C
/C

+
+

 an
d
 cap

ab
ilitie

s

C
o

m
p
artm

e
n
talizatio

n

1
2
8
-b

it, co
d
e
 e

fficie
n
cy

N
o

n
-M

IP
S
 IS

A
s:

A
R

M
v8

-A
, A

R
M

v8
-M

, R
IS

C
-V

, x
8
6
-6

4

T
e
m

p
o

ral m
e
m

o
ry safe

ty
In

-k
e
rn

e
l u

se
M

u
ltico

re

Arm Morello architecture 
synchronization point

Refine 128-bit capability 

compression

Develop CHERI architecture-

neutral protection model

Develop and optimize CHERI 

temporal memory safety

Exception-free domain-

transition model

256-bit capabilities are too 

large – develop 128-bit 

compressed capabilites

More generally, numerous 

improvements in C/C++ 

compatibility, code density, and 

performance resulting from 

interactions with Arm’s teams 

and their customers

Microarchitectural work such as 

efficient tag storage in 

unmodified DRAM using a tag 

controller / tag cache
C-language improvements



High-level CHERI ISAv8 themes

• CHERI ISAv7 released in June 2019; working on ISAv8 release in 2020Q3/4:

• Several ‘experimental’ features are no longer considered experimental
(e.g., sentry capabilities, baseline temporal memory-safety features)

• New instructions, MMU behavior to improve to temporal memory-safety 
performance

• Performance optimization for sentry capabilities

• Minor C-language semantics improvements

• Various CHERI-RISC-V improvements (SCRs, exceptions, alignment, …)

• Continued general improvements to descriptions, rationales, etc.

• Aim is to ensure that Arm’s Morello and CHERI ISAv8 be synchronized

• … including new temporal memory-safety features
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Recent publications: ISA formal modelling and verification

• IEEE Symposium on Security and Privacy (“Oakland”), May 2020

• Formal ISA model for CHERI-MIPS used for rigorous engineering

• Formal modelling of proof of compartmentalization properties



CHERI MICROARCHITECTURE
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Example microarchitecture: CHERI-Piccolo microcontroller
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merged integer & 

capability registers

= tag storage

L1 I-cache

DRAM controller Tag Controller

off-chip DRAM

capability arithmetic

capability load/store

capability exceptions

new registers:

PCC, DDC, CSRs

CHERI-Piccolo core

Changes to the Piccolo core (RISC-V 3-stage pipeline):
• capability arithmetic
• capability load/store operations with bounds checking
• extended exception model 
• PC becomes a capability (PCC)
• default data capability (DDC)
• new control/status registers
• merged integer & capability register file

Memory subsystem:
• AXI user-field added to transport tag bits & data width 

doubled
• caches extended to include tags

DRAM changes:
• New tag controller uses a hierarchical tag table to 

efficiently store tag bits backed by top of DRAM

L1 D-cache



Microarchitectural tag storage for off-the-shelf DRAM

• Published in the IEEE International Conference on Computer Design 
(ICCD) 2017

• Shift from flat to hierarchal tag table to hold tags in DRAM

• Exploit inconsistent density of tags in physical memory

• Reduces DRAM access overhead for a variety of workloads



Compressing capability bounds

• Published in IEEE Transactions on Computers, April 2019

• Efficient compressed capabilities for 32-bit and 64-bit processors

• Reduces size of capabilities from 4x machine word size to 2x

• Large reduction in cache overheads

• Efficiently fits into a RISC pipeline with negligible impact on clock frequency

• Maintains all security and software compatibility properties



SOFTWARE ON CHERI
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Implementing pointer protection using capabilities

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers via valid 
transformations; invalid pointers cannot be used

• Valid pointers, once removed, cannot be reintroduced solely unless rederived from other valid pointers

• E.g., Received network data cannot be interpreted as a code/data pointer – even previously leaked pointers

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong spatial and temporal memory protection, but 
also higher-level policies such as scalable software compartmentalization

20

Globals

Data

Heap Stack

Code

Control flow

Monotonicity Permissions
Integrity and

provenance validity
Bounds



What are CHERI’s implications for software?
• Efficient fine-grained architectural memory protection enforces:

Provenance validity: Q:  Where do pointers come from?

Integrity: Q:  How do pointers move in practice?

Bounds, permissions: Q:  What rights should pointers carry? 

Monotonicity: Q:  Can real software play by these rules?

• Scalable fine-grained software compartmentalization

Q:  Can we construct isolation and controlled communication 
using integrity, provenance, bounds, permissions, and monotonicity?

Q:  Can sealed capabilities, controlled non-monotonicity, and 
capability-based sharing enable safe, efficient compartmentalization?
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Memory protection for the language and the language runtime
• Capabilities are refined by the kernel, run-time linker, 

compiler-generated code, heap allocator, …

• Protection mechanisms:

• Referential memory safety

• Spatial memory safety + privilege minimization

• Temporal memory safety

• Applied automatically at two levels:

• Language-level pointers point explicitly at stack and 
heap allocations, global variables, …

• Sub-language pointers used to implement control flow, 
linkage, etc.

• Sub-language protection mitigates bugs in the language 
runtime and generated code, as well as attacks that cannot be 
mitigated by higher-level memory safety

• (e.g., union type confusion)
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CHERI-based pure-capability process memory
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• Capabilities are substituted for integer addresses throughout the address space

• Bounds and permissions are minimized by software including the kernel, run-time 
linker, memory allocator, and compiler-generated code

• Hardware permits fetch, load, and store only through granted capabilities

• Tags ensure integrity and provenance validity of all pointers



Pure-capability userspace

• Received best paper award at ASPLOS,  April 2019

• Complete pure-capability UNIX OS userspace with spatial memory safety

• Usable for daily development tasks

• Almost vast majority of FreeBSD tests pass

• Management interfaces (e.g. ioctl), debugging, etc., work

• Large, real-world applications have been ported: PostgreSQL and WebKit



Heap temporal memory safety

• IEEE Symposium on Security and Privacy (“Oakland”), May 2020

• Hardware and software support for deterministic temporal memory 
safety for C/C++-language heaps using capability revocation

• Hardware enables fast tag searching using MMU-assisted tracking of 
tagged values, tag controller and cache



CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities, 

combined with a constrained non-monotonic domain-transition mechanism
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Opportunities and challenges

• CHERI dramatically improves compartmentalization scalability

• More compartments

• More frequent domain transitions

• Faster shared memory between compartments

• Many potential use cases – e.g., sandbox processing of each image 
in a web browser, processing each message in a mail application

• Unlike memory protection,  software compartmentalization also 
requires careful software refactoring to support strong 
encapsulation, and affects software operational model
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Operational models for CHERI compartmentalization

• An architectural protection model enabling new software behavior

• As with virtual memory, multiple operational models can be supported

• E.g., with an MMU: Microkernels, processes, virtual machines, etc.

• How are compartments created/destroyed? Function calls vs. message 
passing? Signaling, debugging, …?

• We have explored two viable CHERI-based models to date:

Isolated dynamic libraries Efficient but simple sandboxing in processes

UNIX co-processes Multiple processes share an address space

• Improved performance and new paradigms using CHERI primitives

• Both will be available in CheriBSD/Morello
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CHERI TRANSITION TO MORELLO
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CHERI-ARM research since 2014
• Since 2014, in collaboration with Arm, we have been pursuing joint research to 

experimentally incorporate CHERI into ARMv8-A:

• Develop CHERI as an architecture-neutral and portable protection model 
implemented in multiple concrete architectures

• Refine and extend the CHERI architecture – e.g., capability compression, tagging 
µarch, domain transition, and temporal safety

• Apply concept of architecture neutrality to the CHERI-enabled software stack, 
including compiler, OS, and applications

• Expand software: large-scale application experiments, OS use, debuggers, …

• Extend work in formal modeling and proofs to an industrial-scale architecture

• Solve arising practical {hardware, software, …} problems as part of the research

• Build evidence, demonstrations, SW templates to support potential CHERI adoption
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ISCF: Digital Security by Design (UKRI)
• 5-year Digital Security by Design UKRI program: £70M UK gov. 

funding, £117M UK industrial match, to create CHERI-ARM 
demonstrator SoC + board with proven ISA

• Leap supply-chain gap that makes adopting new architecture difficult 
– in particular, validation of concepts in  microarchitecture, 
architecture, and software “at scale”

• Support industrial and academic R&D (EPSRC, ESRC, InnovateUK)

• Baseline CPU selected; reuses existing SoC/board designs

• Ongoing collaboration reviewing and distilling {essential, desirable, 
experimental} CHERI features for use in SoC

• Science designed allowed: Support multiple architectural design 
choices for software-based evaluation once fabricated

• 2020 emulation models; 2021 “Morello” board delivery
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32 2019 Arm Limited

Why is Arm interested in the CHERI architecture 
• Arm has been working with UoCambridge on CHERI for some 4-5 years

• Big step to addressing security based on strong fundamental principles

• Addresses spatial memory safety robustly and some ideas for temporal safety 
• Memory safety issues reported to be involved with ~70% of vulnerabilities (Matt Miller, BlueHat IL, 2019)

• Has scope to be the foundation of a new mechanism for compartmentalisation
• Potentially far cheaper than using translation tables

• Interesting scope to address temporal safety issues as well as spatial ones….

• Many of the Arm software vendors are similarly interested in the possibilities of CHERI
• Microsoft, Google and others have expressed strong interest in exploring the concept…
• … but lots of questions about the real-world performance costs and usage models
• …understanding the intended usage models is important to refine the architectural features 

• But is a novel thing to do with additional costs to the system and software
• Adding a 129th tag bit has a lot of impacts to the memory system 
• it is an ABI change, so non-trivial costs for compatibility for some uses



33 2019 Arm Limited

The Morello Board 
• An Industrial Demonstrator of a Capability architecture

• Uses a prototype capability extension to the Arm Architecture
• Prototype is a “superset” of what could be adopted into the Arm architecture

• Use of a superset of the architecture is very unusual
• Also unrealistic as a commercial product – there will be some frequency effects
• However, there are tight timescales so architecture is nearly complete now

• The superset of the architecture will allow a lot of software experimentation
• Various different mechanisms for compartmentalisation
• Collection of features for which the justification is unclear 
• Techniques for holding the capability tag bit

• Architecture will have formally proved security properties (with UoC and UoE) 

• Morello Board will be the ONLY physical implementation of this prototype architecture
• Learnings from these experiments will be adopted into a mainstream extension to the Arm architecture
• NO COMMITMENT TO FULL BINARY COMPATIBILITY TO THE PROTOTYPE ARCHITECTURE

– But successful concepts are expected to be carried forward into the architecture and can be reused there 



Porting the CHERI software stack to Morello

• Validate and demonstrate the Morello architecture

• Evaluate the Morello implementation (especially performance)

• Provide reference software semantics (spatial and temporal safety, 

compartmentalization, POSIX integration, OS kernel use, …)

• Act as a template and prototyping platform for industrial 

demonstration (e.g., for Morello Consortium partners)

• Provide a platform for future research (e.g., 9x 3-to-4-year EPSRC 

research projects at UK universities starting July-October 2020)
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DARPA prototype software stack on Morello
• Complete open-source CHERI-enabled software stack from bare metal up: 

compilers, toolchain, debuggers, operating systems, applications

• Rich CHERI feature use, but fundamentally incremental/hybridized deployment

• We also have an as-yet unpublished, in-progress “CheriOS” clean-slate microkernel 
OS, and a CHERI adaptation of the open-source FreeRTOS embedded OS

35

CHERI-extended Google Hafnium hypervisor (Morello only)

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (SRI/Cambridge)

• FreeBSD kernel + userspace, application stack

• Kernel spatial and referential memory protection

• Userspace spatial, referential, and temporal memory protection

• Intra-process compartmentalization

• Co-process IPC

• ARMv8-A 64-bit binary compatibility for legacy binaries

Open-source application suite (WebKit, Python, OpenSSH, nginx, PostgresQL …)

Android (Arm)

(Morello only)

Baseline CHERI 

Clang/LLVM from 

SRI/Cambridge; 

Morello 

adaptation by 

Arm + Linaro

Shipping 

Sep/Oct 

2020!
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CONCLUSION
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Some potential software research areas
• Clean-slate OSes and languages

Current research has focused on incremental CHERI adoption 
within current software and languages. How would we design new 
OSes, languages, etc., assuming CHERI as an ISA baseline?

• Compilers, language runtimes, and JITs

How can we mitigate the performance overheads of more 
pointer-dense executions, such as with language runtimes? Are 
vulnerabilities in code generated by compilers and JIT susceptible 
to mitigation using CHERI? How does CHERI break or potentially 
improve current compiler analyses and optimization?

• Further C/C++ protections with CHERI

We have focused on spatial, referential, and temporal memory 
safety for C/C++. But the CHERI primitives could assist with 
data-oriented protections, garbage collection, type checking, etc. 
Could these improve security, and at what performance cost?

• Safe and managed languages

Languages such as Java, Rust, C#, OCaml, etc., offer strong safety 
properties, but frequently depend on C/C++ runtimes and FFI-
linked native code. Can CHERI provide stronger foundations for 
higher-level language stacks?

• Virtualization

Can memory protection usefully harden hypervisors? Can we 
compartmentalize hypervisors? Can CHERI offer a better 
mechanism for virtualizing code than an MMU?

• Debuggers and tracing

Debugging/tracing tools rely on high levels of privilege to 
operate. How can we reduce their privilege to mitigate 
vulnerabilities in these tools? With stronger architectural 
semantics, is new dynamic analysis possible?

• Software compartmentalization tools

Granular software compartmentalization offers vulnerability 
mitigation through privilege reduction and strong encapsulation. 
How should current applications be refactored, and new 
applications be designed, to accomplish maintainable and more 
secure software?

• Security evaluation and adversarial research

What is the impact of CHERI on known vulnerabilities and 
attack techniques? How does a CHERI-aware attacker change 
their behavior? Could formal models and proofs support 
stronger security arguments for CHERI?
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Conclusion
• CHERI primitives developed over 10 years of hardware-software-

semantics co-design

• Enables fine-grained memory protection and scalable software 
compartmentalization

• Will appear in the Arm Morello board shipping 2021Q4, along with 
our complete open-source CHERI software stack

• Many opportunities for future research into enabled software 
models, architectural and microarchitectural enhancements

http://www.cheri-cpu.org/

• Watson, Moore, Sewell, and Neumann. An Introduction to 
CHERI, UCAM-CL-TR-941, September 2019.
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