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Abstract—Recurrent neural networks (RNNs) have shown state
of the art results for speech recognition, natural language pro-
cessing, image captioning, and video summarizing applications.
Many of these applications run on low-power platforms, so
their energy efficiency is extremely important. We observed
that cache-oblivious RNN scheduling during inference typically
results in 30-50x more data transferred on and off the CPU
than the application’s working set size. This can potentially
impact its energy efficiency. This paper presents a new metric
called Data Reuse Efficiency to gauge the RNN scheduling
efficiency of a platform and shows the factors that influence the
DRE value. Additionally, this paper discusses an optimization
to improve reuse in RNNs and highlights the positive impact of
this optimization on the total amount of memory read from or
written to the memory controller (and, hence, the DRE value)
during the execution of an RNN application for a mobile SoC.

Index Terms—Machine Learning, Neural Networks, Schedul-
ing

I. RECURRENT NEURAL NETWORKS (RNNS)

Recurrent neural networks are a type of deep neural network
(DNN) that make use of sequential information. They are
used in tasks where the ordering of the input sequence is
important (e.g., time-based data, natural language processing).
The fundamental component of a RNN is a cell. The cells
have weights and an internal state. The state is updated by
applying the same computation and weights to every element
of a sequence, in sequence order, over multiple time steps.
This state is called the hidden vector and acts as a ”memory”.
Multiple cells can be stacked on top of each other to form a
multilayer recurrent neural network. Most popular RNN cell
types are long short-term memories (LSTMs) [2] and gated
recurrent units (GRUs) [3].

Figure 1 represents a 2-layer RNN network followed by a
fully connected softmax layer. The input to the network is
the query, “Who are you?” spread over three time steps. The
weights of RNN Cell 1 and 2 are denoted by “Cell Weights 1”
and “Cell Weights 2”. These cell weights do not change across
each time step. Figure 2 shows the equations executed by a
LSTM layer. Here xt denotes the input at time step t, ht−1
denotes the memory element from previous time step and ht

denotes the memory element after the end of the computation
during the current time step. The cell weights in Figure 1 are
the concatenation of W and U matrices in Figure 2.

II. CURRENT RNN SCHEDULING

To efficiently execute the operations in Figure 2, these
weight matrices are concatenated together to create a larger

t0 t1 t2

RNN 
Cell 1

RNN 
Cell 1

RNN 
Cell 1

Who are you?

Cell 1 Weights/ G 
Matrix

Input Query – “Who are you?”

RNN 
Cell 2

RNN 
Cell 2

RNN 
Cell 2

FC FC FC

Cell 2 Weights/ G 
Matrix

Fig. 1. 2 layer RNN network

ft = σg(Wf · xt + Uf · ht−1)

it = σg(Wi · xt + Ui · ht−1)

ot = σg(Wo · xt + Uo · ht−1)

ct = ft ◦ ct−1 + it ◦ σc(Wf · xt + Uf · ht−1)

ht = ot ◦ σct
Fig. 2. Equations executed by a LSTM layer

matrix (referred to as G in this paper) which is then multiplied
by the concatenation of the input vector and the hidden vector.

G =

[
W f W i W o W c
U f U i U o U c

]

ConcatenatedInputV ector(I) =

[
xt
ht-1

]
G is a 2-row concatenation of the W and U matrices, where

each row has 4 W or U matrices. Thus, if a single W or U
matrix is of size [n,n], then the concatenated matrix, G, has
the size [2*n,4*n].

Following the equations in Figure 2, G is multiplied by I .
The resultant output vector is divided into 4 vectors to execute
the rest of the operations.
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Algorithm 1 Scheduling algorithm for non-streaming ap-
plications: Each input x0:T is concatenated with the hidden
vector from the previous step, h and multiplied with G.
The result passes through a non-linearity layer, after which
it is split into 4 sub-vectors. These sub-vectors are linearly
combined to generate the hidden vector for the current time
step.

1: Input - G,T, n, x0:T
2: r ← 1
3: c← 0
4: h← 0
5: I ← 0
6: for r < T do
7: I = concat(xr, h)
8: Y = G ∗ I
9: Y ′ = sig(Y ′[0 : 3 ∗ n, :])

10: f = Y ′[0 : n]
11: i = Y ′[n : 2 ∗ n]
12: o = Y ′[2 ∗ n : 3 ∗ n]
13: c′ = tanh(Y [3 ∗ n : 4 ∗ n, 0])
14: c = f ◦ c+ i ◦ c′
15: h = o ◦ c
16: r = r + 1
17: end for
18: return h

The current schedule for inference of a multilayered LSTM
network is:

1) An input I is broken down into multiple vectors: x1, x2,
x3, . . . , xT .

2) The computations are scheduled as described in Algo-
rithm 1

3) Step 2 is repeated for each layer in the multilayered
RNN.

The above schedule is not restricted to LSTMs only and is
applicable to any RNN Cell network.

III. ISSUES WITH CURRENT RNN SCHEDULING
ALGORITHMS

To identify the issue with the current scheduling scheme,
we run experiments on a desktop Intel Haswell Platform with
a 25 MB last-level cache (LLC). We use benchmarks written
in TensorFlow 1.4 compiled with the Intel MKL library. An
optimized dataflow graph for deployment is created using the
freeze graph tool in Tensorflow and the resultant graph is
executed to process the input queries.

Table I lists the configuration of the LSTM benchmarks
evaluated. All the parameters in Table I are combined to create
a total of 320 benchmarks. The basic architecture for each
benchmark is similar to that shown in Figure 1 – multiple
RNN layers followed by a softmax layer. The benchmarks
cover small and large vocabularies. Vocabulary is the number
of words/tokens used in a NLP application. Each word/token
is represented via a vector and the matrix of vectors of all the
words/tokens used by the application is called an embedding.
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Fig. 3. Distribution of DRE values for all benchmarks with small vocabulary
(60 words).

For NLP applications, embeddings are present in the first and
the last layers of the network.

A. Data Reuse Efficiency (DRE)

This paper introduces a new metric to measure the efficiency
of scheduling RNN operations in a modern deep learning
framework. The metric measures how much more data than
the working set of the RNN application was used during the
execution of the RNN application. Thus, efficiency in this
context is an indication of the usage of memory bandwidth.
This metric requires measuring two quantities - bandwidth
usage of the application and application working set size.
The bandwidth usage of an application can be measured by
using the performance counters in the memory controller of
the platform. When measuring the bandwidth usage, each
benchmark is run 100 times. The average amount of data read
from and written to a memory controller (AvgRW ) across
all runs is measured. Next, the working set (weights + word
embeddings + intermediate values) of the RNN network is
calculated from the benchmark configuration parameters. The
inefficiency in scheduling is measured by calculating the ratio,

DataReuseEfficiency(DRE) = AvgRW/WorkingSet
(1)

The lower the value of DRE, the better a scheduling
algorithm. An ideal system will have a DRE of 1 i.e., it is
able to cache all the weights until they are no longer required.

B. Results

LSTM (with small vocabulary): For small vocabulary,
the total size of output embedding does not exceed 0.5 MB.
Figure 3 shows the % of benchmarks exceeding a certain
DRE value. The benchmarks that have a DRE value > 1,
have a working set size close to or greater than the size of
LLC. 41% of the benchmark’s working set size is > 25 MB.
Accounting for overheads (TensorFlow, python, OS, perf, and
shell scripts used to run experiments and collect results), the
benchmarks whose working set size is close to 25 MB will



Config. Name Description Value
RNN Size Size of the hidden vector 64,128,256,512,1024
Number of Layers Number of stacked RNN Cells on top of each other 1,2,3,4,5,6,7,8
RNN Cell Type Type of RNN cell LSTM, GRU
Length of Input Number of time steps over which input is fed to the RNN

network
1,10,50,100

Vocabulary Size Number of classes in the dictionary Small - 60, Large - 10,000
Batch Size Number of inferences simultaneously processed 1

TABLE I
BENCHMARK PARAMETERS (TOTAL OF 320 BENCHMARKS)
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Fig. 4. Distribution of DRE values for all benchmarks with small vocabulary
(60 words). The distribution divided based on input length.

also not fit in the cache. These benchmarks will compete
with overheads for space in the cache. If we assume that the
overheads take up 3 MB of space in the cache, a working set
size of 22 MB (16% of the benchmarks) or more will not fit
in the cache completely. Thus a total of 57% of benchmarks
have a DRE value > 1. Other benchmarks, along with the
overheads, completely fit in the cache and do not see any read
write traffic at the memory controller. Since DRE captures
the AvgRW traffic across 100 runs, the value of AvgRW
will be less than the working set of these benchmark.

There is also a strong correlation between the length of
input and the DRE value. Figure 4 breaks down the values
in Figure 3 based on input length. It shows a bar chart of %
of benchmarks with input of length 10 to 100 and satisfying
a DRE criterion. The first blue bar of Figure 4 implies that
70.8% of benchmarks that have an input length of 10, have a
DRE value > 1 while 22% of benchmarks that have an input
length of 100, have a DRE value > 50.

Impact of a larger vocabulary: There is also a correlation
between DRE value and the vocabulary size. When the
vocabulary size is 10, 000 words, the word embedding could
be anywhere between 4.78 MB for hidden unit vector of size
64 and 72 MB for hidden unit vector of size 1024. Figure 5
shows that with a larger vocabulary, the number of benchmarks
that have a DRE value > 1 and DRE value > 4 increases
to 62%.

Results for GRU: The results for GRU cell based networks
are very similar. For brevity, we do not discuss them in the
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Fig. 5. Distribution of DRE values for all benchmarks with large vocabulary
(10,000 words).

paper.

C. Key Observations

• The current scheduling algorithm does not focus on data
reuse in RNNs during inference – for some benchmarks,
50x more data is read than the working set of the
benchmark.

• For smaller caches (as seen in mobile devices), the
problem of high DRE should be even more prominent

• The DRE value is proportional to the number of layers,
size of the hidden vector, vocabulary size and the length
of the input. It increases as each of these values increases.

IV. IMPROVING THE BANDWIDTH EFFICIENCY OF RNN
CELLS

Breaking the G Matrix: Reuse in RNNs is not obvious
when we schedule them as discussed in Section II. However,
across all the time steps, the matrix G does not change. Matrix
G is composed of 2 sets of matrices. Wf/i/o/c gets multiplied
with inputs x1, x2, x3, . . . , xT while Uf/i/o/c gets multiplied
with the hidden vectors generated at each time step.

Generally for NLP applications, the inputs are available
before hand. Even if the input is streaming, buffering of inputs
can create a scenario where inputs across some of the time
steps are available beforehand. This provides an opportunity to
implement a bandwidth efficient scheduling scheme by making
three changes to the algorithm discussed in section II:



• G should be broken down into two sets of matrices - G1
and G2.

G1 =
[
W f W i W o W c

]
G2 =

[
U f U i U o U c

]
• Next, the inputs should be concatenated across all time

steps into a single matrix.

I ′ =
[
x1 x2 x3 . . . xT

]
• Finally, the computations should be executed as described

in Algorithm 2.

Algorithm 2 Bandwidth efficient LSTM computation: The
input elements x0:T are all concatenated into a single matrix
I ′. This matrix gets multiplied by G1 and the result is stored
in X ′. For each time step, G2 is multiplied with the hidden
vector from the previous time step and the result is added
with the column representing the output of G1*I’ for that time
step. This vector passes through a non-linearity layer and gets
split into multiple sub-vectors which are linearly combined to
generate the hidden vector for the current time step.

1: Input - G1, G2, T, I ′, n
2: r ← 0
3: c← 0
4: h← 0
5: X ′ ← G1 ∗ I ′
6: for r < T do
7: Y ′ = G2 ∗ h
8: Y ′ = X ′[:, r] + Y ′

9: Y ′ = sig(Y ′[0 : 3 ∗ n, :])
10: f = Y ′[0 : n]
11: i = Y ′[n : 2 ∗ n]
12: o = Y ′[2 ∗ n : 3 ∗ n]
13: c′ = tanh(Y [3 ∗ n : 4 ∗ n, 0])
14: c = f ◦ c+ i ◦ c′
15: h = o ◦ c
16: r = r + 1
17: end for
18: return h

Ideally, a scheduler should first schedule computation in
line 5. Now, instead of recalculating Wf · xt, Wi · xt, Wo ·
xt and Wc · xt at every time step, the scheduling algorithm
could read the tth column of X ′ and use that as the input to
subsequent computations (line 8). By doing the computation
this way, we read G1 once. Next, the computations for line 7-
15 are scheduled. These computations need to be scheduled for
each vector in the input sequence. Thus, G2 still needs to be
read at every time step because of the sequential dependency
on the hidden vector (line 7).

Assuming a input vector and hidden vector size of 512 each,
the total size of the G matrix is 8 MB (4 W and 4 U matrices,
each of size 1 MB). If the size of the cache is smaller than 8
MB, G matrix will not fit in the cache. For a system using the
scheduling scheme described in Section II, the G matrix will

be reread from the memory at every time step. If the input
length is 100, the total amount of data read from the memory
is 800 MB. By using the new schedule, we can reduce the
amount of data read from the memory to 404 MB instead of
800 MB, thus improving the DRE value.

A similar scheduling scheme is discussed in [7]. However,
this work differs from [7] in two ways. Firstly, they discuss this
scheduling scheme from the perspective of a GPU. Secondly,
to enable enough parallelism, they do two computations of
input time steps simultaneously instead of all time steps in
the above implementation (line 5, algorithm 2). Lastly, they
do not look at the impact of this scheduling scheme on the
memory bandwidth consumption.

V. EVALUATING THE IMPACT OF THE OPTIMIZED
SCHEDULER

We developed an analytical model to gauge the impact of
the optimized scheduler on the memory system. It takes in
the network configuration to create a data flow graph based
on a scheduling algorithm. The data flow graph generates the
memory requests which are fed to a least recently used (LRU)
cache of size 12 MB. The cache size is chosen to mimic a
modern day mobile SoC. Cache misses, along with writeback,
are used to measure the read and write traffic to and from the
memory. The matrix vector multiplication operations generate
requests assuming cache blocking techniques to maximize
reuse in the cache.

A. Benchmarks Evaluated

The 4 applications modelled are language translation
(Google’s Neural Machine Translation (GNMT) [5]), speech
recognition (DeepSpeech1 [4]), language modelling (LM) [7]
and named entity recognition (byteNER [6]). GNMT has 8
encoder-decoder RNN layers along with an attention module
and a vocabulary of size 80,000. DeepSpeech1 has 5 RNN
layers and uses a vocabulary size of 28 words. LM consists of
2 LSTM layers and uses a vocabulary of size 80,000. byteNER
has 4 RNN layers and uses a vocabulary of size 4.

The benchmarks are evaluated using the following schedul-
ing algorithms:
• Schedule A - This schedule is described in Section II of

this paper and is the one used in TensorFlow compiled
with MKL. Computations are scheduled one layer at a
time. Each layer processes inputs across all the time steps
before moving to the next layer.

• Schedule A+ - This is the schedule discussed in Sec-
tion IV where the G matrix is broken into two matrices
G1 and G2.

B. Results

Impact on Bandwidth: Figure 6 shows the impact of the
optimized schedule, measuring the memory traffic to and from
the memory. The values 10, 20, 50, and 100 indicate the
number of time steps across which the input is fed to the
network. The values have been normalized to schedule A’s
traffic for each benchmark.
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Fig. 6. Bandwidth savings after breaking the G matrix for different scheduling
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For LM, traffic to the memory reduces by 1.25× for smaller
input lengths and 1.29× for longer input lengths. LM uses
cells of size 2,048 for one layer and 8,192 for the other. The
G1 and G2 matrices are equally sized for the first layer. This
gets 2x improvement for those layers. However, for the second
layer, G2 is larger than G1 as each hidden-hidden weight
matrix is of size 8192x8192 while the input weight matrix is
of size 2048x8192. The optimization discussed in Section IV
reduces the cost of reading G1 multiple times. Since G1 is 4
times smaller than G2, A+ is not as effective for layer 2 as
for layer 1. Thus, the overall benefit of A+ does not reach the
expected factor of 2. Additionally, the G matrix is 96 MB for
the first layer and 960 MB for the second layer. These values
will not fit in the cache. Thus, schedule A will not see any
reuse.

GNMT is composed of encoder and decoder RNN layers,
attention layers and word embedding layers. The G matrix
splitting does not apply to attention layers. The decoder layers
need the output of the previous time step as an input to the
next time step. As a result, the G matrix splitting optimization
cannot be applied to the decoder layers. Thus, A+ is only
applied to the encoder layers, resulting in an improvement
over schedule A by a factor of 1.45 to 1.65.

ByteNER is a smaller network of size 9.4 MB. As a result,
the network will fit in the cache and there will be significant
reuse of data structures within the cache across multiple time
steps for all the schedules. Thus, both schedules perform
equally well.

VI. CONCLUSION

This paper introduces DRE, a new metric to measure the
efficiency in scheduling RNN applications on CPUs. Using
this metric, we have uncovered that typical RNN applications
communicate with memory 30-50× their working set size, due
to inefficient data organization and scheduling. To counter this,
this paper also introduced a new optimization to significantly
improve the DRE value and, consequently, improve the
memory utilization efficiency.
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