
ST AI Solutions
on computer vision

Asia Pac Artificial Intelligence Competence Center

Di LI

Agenda

1 Overview ST solutions for CV

2 Network optimization and deployment strategy on STM32

3 Introduction to FP-AI-VISION1 function pack

2

Overview ST solutions for CV

This is where AI opens new horizons
for embedded design!

4

 Generate code from real-

world observations

 Automated feature

extraction?

 Re-learn from data if

environment evolves

 Requires digital signal

processing skills

 Manual feature

extraction?

 Need to rewrite if

environment evolves

Product development new paradigm

Machine Learning
Rules learnt from real-world data

Standard programming
Handcrafted rules based on experience

From rule-based engineering to data-driven engineering

5

Distributed Artificial Intelligence approach

Leverage billions of devices at the Edge!

100 Billions

Millions

Thousands

Data Center Cloud
Analytics, storage, compute

Edge Nodes
IoT gateways, micro datacenters

Edge Things
Real time, local processing

Ultra-low-power

devices and sensors

6

Addressing the challenges of your IoT products

Artificial Intelligence close to data acquisition

brings several benefits

Privacy by design

GDPR compliant

Sustainable on energy

Low-power consumption

Better user experience

Ultra-low latency

Real-time applications

More reliability

Security of data

No sharing in the cloud

7

Growing community and ecosystem of Deep Edge AI technologies focusing on

standalone, low-power and cost-efficient embedded solutions.

Embedded AI technology trend

AI technologies are now

embedded inside end devices

(MPU, MCU and sensors).

MCU MPU

“Global Shipments of Deep Edge AI Devices

to Reach 2.5 Billion by 2030”
Source: ABI Research

8

https://www.prnewswire.com/news-releases/global-shipments-of-tinyml-devices-to-reach-2-5-billion-by-2030--301123076.html

1 2 3

AI development workflow – STM32Cube.AI

Model development

Model

testing

Model

selection and

training

Data preparation

Data

processing

Data

acquisition

Model Implementation

Model

inference

Model library

creation

Data logging

tools

Edge AI toolkit

9

Functions served by Neural Networks

DOG

Classification

DOG, PERSON DOG, PERSON

Object Detection
Image

Segmentation

10

Computer vision boards for AI

STM32MP157C-DK2

Flash: uSD card

RAM: 512 MB

LCD: 4" TFT 480×800 pixels

Camera: USB OTG HS

1 Gb Ethernet, 802.11b/g/n, BLE4.1

Arrow Avenger96

Flash: 8GB eMMC + 2MB QSPI NOR

RAM: 1GB DDR3

LCD: HDMI1.4 WXGA

1Gb Ethernet, 802.11a/b/g/n/ac, BLE4.2

D3 CAMERA MEZZ OV5640

Camera: OV5640 image sensor

RGB 15 FPS 5Mpx or 30 FPS 1080p HD

MIPI CSI2.0

MP1 Discovery and STM32MP1L4 / L4+ Discovery

32L4R9IDISCOVERY

Flash: 2MB

RAM: 640kB

LCD: 1.2" 390x390 px capacitive

touch round display panel

Camera: USB OTG FS

STM32L4

Discovery

STM32H747I-DISCO

Flash: 2MB

RAM: 1MB

LCD: 4” capacitive touch

Camera: F4DIS-CAM or VG5661

STM32H7

11

https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.96boards.org/product/avenger96/
https://www.arrow.com/en/products/d3cameramezzov5640/d3-engineering
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-discovery-kits/32l4r9idiscovery.html
https://www.st.com/content/st_com/en/products/evaluation-tools/product-evaluation-tools/mcu-mpu-eval-tools/stm32-mcu-mpu-eval-tools/stm32-discovery-kits/stm32h747i-disco.html

STM32MP1 microprocessor
Augmented intelligence

Dual Cortex-A7

OpenSTLinux Distribution

STM32CubeMx

Cortex-M4

Realtime OS

STM32CubeMX

+=

&

X-LINUX-AI-CV

support for

• STM32Cube.AI to convert pre-trained NNs for the Cortex-M4 core

• TensorFlow Lite STM32MP1 support up streamed for native NN inferences support on the dual Cortex-A side

STM32MP1

12

OpenMV integration
Fast machine vision prototyping

https://github.com/openmv/openmv

Configure Machine Vision in

real-time over USB in Python

OpenMV CAM
Running MicroPython over STM32

Run and validate optimized

Neural Network

13

Aftermarket wireless digit reader for metering

Neural Network on

Demo overview

• Input : QQVGA @4fps

• Proprietary Neural Network

• Accuracy : 98%

• Inference 84 ms / digit

• Ram : 21KiB

• Flash 20KiB

• Trained on a private dataset

• LoRaWan Stack on LoRa SoC

• Ram 6KB

• Flash 65KB

Equip meters with aftermarket Wireless & Low power reader

Use case

• Equip meter with ad-on SPI low-

cost camera

• Boost ROI avoiding onsite visit

implementing long range wireless

reader

• Electrical, gaz, water meters

supported

• Reader lifetime : 2 years on battery

at ? read per hour

• Reading sent over LoRaWAN
STM32WL55JC

ov2640

STM32WL

Neural Network on

Aftermarket wireless digit reader

Neural Networks

• ROI NN detection

• Input : 240x240

• Quantized CNN

• 148 KB Flash / 57 KB RAM

• Inference time 0.3 s

• Digits NN recognition

• Input : 24x140

• Quantized CNN

• 67 KB Flash / 66 KB RAM

• Inference time 0.9 s

• Output: 8 digit including half on

latest digit

Equip meters with aftermarket Wireless & Low power reader

Demo setup

B-L462E-CELL1 board with

LBAD0ZZ1SE module from Murata:

• STM32L462RE

512 KB Flash, 160KB RAM, 80 MHz

• eSIM (ST4SIM-200M),

• LTE Cat M/NBIoT modem

Arducam mini 5MP plus

STM32L4

Face recognition

Camera

frame

capture

Frame pre-

processing

Face

Detection

Face

Recognition

Face

Identification

Local

enrolled

user

database

User face ID + score

Data flow during enrollment mode

Data flow during nominal mode

All processing is managed by the STM32 MCU

Recognize one or multiple human faces within a camera captured frame.

Face recognition at the edge is becoming more and more popular because

of following advantages:

• Privacy issue : no loss of privacy thanks to local image processing

• Extremely low latency

• Low power consumption

16

Neural Network on STM32MP1

Object detection on STM32MP1 MPU

Demo overview

• integrated via C++

runtime implementation on STM32MP1

dual-core A7

• COCO SSD MobileNet v1: 90 objects

• CPU load balanced on the 2 cores

• Processing time: 1.1 FPS

Advanced object detection among 90 different objects using

TensorFlow Lite on STM32MP1

Use cases

• Detect object and its position.

• 90 objects can be detected

• Object detection is performed in real time

for fast interaction with user

• Requires only a low-resolution camera

Identify and locate

potential instances

of plant disease

Arrow Avenger96 or STM32MP1 DK2

DCMI Camera@30fps or USB Camera

Display

17

Computer Vision Software for STM32

Person presence

detection
Object

classification

Face

Recognition

People

Counting

User 2

Add AI computer vision to your STM32 product for

new features and add-on services

Total count = 4

FP-AI-VISION1

18

And more

STM32.AI lib
STM32.Vision

lib

Optimized NN

files

Customer

application

run-time

18

Making Edge AI possible with all STM32 portfolio

High Perf

MCUs

Ultra-low Power

MCUs

Wireless

MCUs

Mainstream

MCUs

Radio co-processor only

STM32H7

Up to 3224 CoreMark

Up to 550 MHz Cortex -M7

240 MHz Cortex -M4

STM32MP1

4158 CoreMark

Up to 800 MHz Cortex-A7

209 MHz Cortex-M4

STM32F2

Up to 398 CoreMark

120 MHz Cortex-M3

STM32F4

Up to 608 CoreMark

180 MHz Cortex-M4

STM32F7

1082 CoreMark

216 MHz Cortex-M7

STM32F0

106 CoreMark

48 MHz Cortex-M0

STM32G0

142 CoreMark

64 MHz Cortex-M0+

STM32F1

177 CoreMark

72 MHz Cortex-M3

STM32F3

245 CoreMark

72 MHz Cortex-M4

STM32G4

569 CoreMark

170 MHz Cortex-M4

STM32L0

75 CoreMark

32 MHz Cortex-M0+

STM32L1

93 CoreMark

32 MHz Cortex-M3

STM32L4

273 CoreMark

80 MHz Cortex-M4

STM32L4+

409 CoreMark

120 MHz Cortex-M4

STM32L5

443 CoreMark

110 MHz Cortex-M33

STM32U5

651 CoreMark

160 MHz Cortex-M33

STM32WL

162 CoreMark

48 MHz Cortex-M4

48 MHz Cortex-M0+

STM32WB

216 CoreMark

64 MHz Cortex-M4

32 MHz Cortex-M0+

MPU

Latest product generation

Mixed-signal MCUs

STM32Cube.AI is compatible with all STM32 series

19

Network optimization and deployment
strategy on STM32

Image classification model

• The following is the classical architecture of convolutional neural network, VGG-16

• This structure is mainly composed of convolutional, pooling and fully-connected layers

• For the model of image classification, after the images are fed into the convolutional neural network, the

network will output an array, each item of which is the probability of the corresponding class

Convolution Max pooling Full connection

person

car

unknown

21

VGG is too heavy!!

INPUT: [224x224x3] weights: 0

CONV3-64: [224x224x64] 】weights: (3*3*3)*64 = 1,728

CONV3-64: [224x224x64] weights: (3*3*64)*64 = 36,864

POOL2: [112x112x64] weights: 0

CONV3-128: [112x112x128] weights: (3*3*64)*128 = 73,728

CONV3-128: [112x112x128weights: (3*3*128)*128 = 147,456

POOL2: [56x56x128] weights: 0

CONV3-256: [56x56x256] weights: (3*3*128)*256 = 294,912

CONV3-256: [56x56x256] weights: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] weights: (3*3*256)*256 = 589,824

POOL2: [28x28x256] weights: 0

CONV3-512: [28x28x512] weights: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] weights: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] weights: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] weights: 0

CONV3-512: [14x14x512] weights: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] weights: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] weights: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] weights: 0

FC: [1x1x4096] weights: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] weights: 4096*4096 = 16,777,216

FC: [1x1x1000] weights: 4096*1000 = 4,096,000

TOTAL params: 138M parameters

VGG-16 structure VGG-16 parameters

• The classic convolutional neural network VGG-16 is too bulky and heavy for embedded devices such as

stm32. Because stm32 and other embedded devices RAM and flash resources are relatively limited.

22

Why separable convolution
• Parameters required for classical convolution calculation

• N_std = 4 × 3 × 3 × 3 = 108

Input (3 channels) Filter *4 Feature map*4

23

Why separable convolution

 Parameters required for classical convolution calculation

N_separable = N_depthwise + N_pointwise = 39

N_depthwise = 3 × 3 × 3 = 27 N_pointwise = 1 × 1 × 3 × 4 = 12

24

Knowledge distillation

Techer model : Pre-trained

Student model : To be trained

predictions

predictions

• Soft label

person

car

unknown

• hard label

person

car

unknown

• Knowledge distillation, which can transfer knowledge from one network to another. This is done by first training a

TEACHER network, and then using the output of this TEACHER network and the true labels of the data to train the

STUDENT network. Knowledge distillation can be used to transform a network from a large network into a small network

and retain performance close to that of the large network.

data 25

• The models are quantized. Quantization consist in converting floating-point (32b) model to fixed-point (8b)

model

• To reduce model size (size of the requested memory to store the weights). Up to x4

• To reduce peak memory usage (size of the activations memory buffer). Up to x4

• To improve latency (runtime is based on the integer operator implementations and uses the STM32 DSP

instructions). Consequently, inference time and power consumption are improved.

• With minimal loss of accuracy. Network size/complexity dependent

Quantization

Model Format Accuracy

(top 1)

Inference

time (ms)

Weight

memory

Flash (KiB)

Activation

footprint

RAM (KiB)

Image Classification Quantized 85 % 70 77 38

Image Classification Float 87 % 212 311 132

% float vs quantized + 203 % + 304 % + 247 %

Visual Wake Word Quantized 85.2 % 58 214 37

Visual Wake Word Float 85.4 % 190 824 150

% float vs quantized + 228 % + 285 % + 305 % 26

Quantized model support

Simply use quantized networks to reduce memory footprint and

inference time

STM32Cube.AI support quantized Neural Network

models with all parameter formats:

• FP32

• Int8

• Mixed binary Int1 to Int8 (Qkeras*, Larq.dev*)

0

100

200

300

400

500

600

700

800

0 20 40 60 80

F
la

s
h

 (
k
B

)

Latency (ms)

LATENCY & MEMORY COMPARISON FOR
QUANTIZED MODELS

FP32

Int8

Int 1 + Int8
HW Target: NUCLEO-STM32H743ZI2

Model: Low complexity handwritten digit reading

Freq: 480 MHz

Accuracy: >97% for all quantized models

Tested database: MNIST dataset

*Please contact edge.ai@st.com to request

the relevant version of STM32Cube.AI

MNIST dataset

27

mailto:edge.ai@st.com

A tool to seamlessly integrate AI in your projects

Machine Learning

Deep Learning

Select MCU & upload your model

Optimize and validate

Generate project and deploy

HIGH PERFORMANCE

EDGE AI PRODUCT

28

Layers / Frameworks support

• Find out all the layers officially supported by Cube.AI in the following repository
• C:\Users\<user name>\STM32Cube\Repository\Packs\STMicroelectronics\X-CUBE-

AI\7.2.0\Documentation

29

• In *Keras* we support the Tensorflow backend with channels-last dimension ordering. Keras 2.0 up
to version 2.3.1 is supported, while networks defined in Keras 1.x are not officially supported.

• Model may be loaded from a single file with model and weights (.h5, .hdf5) or from the model
configuration and weight in separate files. In the latter case, the weights are loaded from a HDF5
file (.h5, .hdf5) and model configuration is loaded from a text file, either JSON (.json) or YAML
(.yml, .yaml).

Keras

Keras operators supported by cube.AI

Dense Activation Flatten Reshape InputLayer Permute RepeatVector Conv1D Conv2D

SeparableConv1D SeparableConv2D DepthwiseConv1D DepthwiseConv2D Conv2DTranspose Cropping1D Cropping2D Upsampling1D Upsampling2D

ZeroPadding1D ZeroPadding2D MaxPooling1D MaxPooling2D AveragePooling1D AveragePooling2D GlobalMaxPooling1D LSTM GRU

ReLU Softmax BatchNormalization Bidirectional Dropout GaussianDropout Concatenate ActivityRegularization SpatialDropout1D

30

• *Tensorflow Lite* is the format used to deploy neural network models on mobile platforms.

Cube.Ai converts the bytestream (.tflite files) to C code; a number of operators from the

supported operator list are handled and quantized models are partially supported.

Tensorflow Lite

Tensorflow Lite operators supported by cube.AI

AVERAGE_POOL_2D MAX_POOL_2D CONCATENATION CONV_2D TRANSPOSE_CONV
DEPTHWISE_CONV_2

D
LEAKY_RELU RELU RELU6

FULLY_CONNECTED
LOCAL_RESPONSE_

NORMALIZATION
PAD PADV2 PRELU QUANTIZE DEQUANTIZE REDUCE_MAX REDUCE_MIN

REDUCE_PROD SUM RESHAPE SQUEEZE
RESIZE_NEAREST_N

EIGHBOR
RESIZE_BILINEAR SLICE LOG_SOFTMAX SOFTMAX

POW MUL MINIMUM FLOOR_MOD FLOOR_DIV ADD SPLIT STRIDED_SLICE TRANSPOSE

31

• In *ONNX* a subset of operators from Opset 7, 8, 9 and 10 of ONNX 1.6 is

supported.

• Model may be loaded from a single file with model and weights (.onnx).

ONNX

ONNX operators supported by cube.AI

Add AveragePool BatchNormalization Concat Constant Conv ConvTranspose Div Elu

Flatten Gemm Hardmax HardSigmoid GlobalAveragePool GlobalMaxPool
InstanceNormalizatio

n
LeakyReLU LogSoftmax

LpNormalization LRN MatMul MaxPool Max Mul Pad PRelu Reshape

ReduceMax Resize Selu Slice Squeeze Softmax Tile ThresholdedRelu Transpose

32

Introduction to FP-AI-VISION1

Food

classification

FP-AI-VISION1

Give vision to your STM32 product for

new features and add-on services

Person presence

detection

People

counting

FP-AI-

VISION1 v1.0
FP-AI-

VISION1 v2.0

FP-AI-

VISION1 v3.0 B-CAMS-OMV STM32H747I-DISCO

CAMERA STM32 LCD

BSP HAL

STM32_Fs FatFs

STM32_AI_Utilities STM32_USB

AI applications

Development boards

Drivers

Hardware component

Middleware

STM32_AI_Runtime STM32_Image

34

Person presence detection
FP-AI-VISION1

Visual Wake Word model on STM32L4R

 Visual wake word for smart homes or city security cameras

 Multiple models suitable for ultra-low power STM32L4R to high

performance STM32H7 MCUs, depending on required performance and cost

 Reduce false alarms due to object movement detection

Replace PIR with Ultra-low power and reliable person detection

Model input resolution 96x96 RGB pixels

Model complexity 69k MACC

Inference time 274 ms @ 120 MHz

Max rate 3.6 FPS

Flash 214 KB

RAM 46 KB

MCU power consumption (full FPS) 35 mA

MCU power consumption (SMPS) 22 mA 35

Image classification
FP-AI-VISION1

Food classification demo on STM32H7*

 CNN can classify 18 types of food (224x224 RGB images), but you can retrain with your

own dataset for defect detection, material classification, conveyor belt sorting and more!

 Multiple examples of camera input resolution and quantization for accuracy/footprint

tradeoff optimization

 Different memory mappings to optimize and test impact on performances

Apply image classification to your own use case

Model input resolution QVGA

Model complexity 69k MACC

Inference time 145 ms @ 400 MHz

Max rate 5.4 FPS

Flash 160 KB

RAM 240 KB

MCU power consumption (SMPS) 80 mA

*memory optimized model

Other are available in FP-AI-VISION1
36

People counting
FP-AI-VISION1

Advanced models on STM32H7

 Detect multiple people to enable your system to count accurately

 Add intelligence to your smart building : monitor factory, meeting room or

showroom people flows

 Monitor physical distances between multiple people

Monitor building usage with cost and power efficient solution

Model input resolution 240x240 RGB pixels

Model complexity 96M MACC

Inference time 371 ms @ 400 MHz

Max rate 2.7 FPS

Flash 230 KB

RAM 233 KB

MCU power consumption (SMPS) 80 mA

37

• FP-AI-VISION1 is a function pack (FP) demonstrating the capability of STM32H7 Series
microcontrollers to execute a Convolutional Neural Network (CNN) efficiently in relation to
computer vision tasks. FP-AI-VISION1 contains everything needed to build a CNN-based computer
vision application on STM32H7 microcontrollers.

• FP-AI-VISION1 can be downloaded from the link below

• https://www.st.com/content/st_com/en/search.html#q=fp-ai-vision1-t=tools-page=1

FP-AI-VISION1

38

• Runs on the STM32H747I-DISCO board connected with the STM32F4DIS-CAM camera daughterboard

• Includes three image classification application examples based on CNN:

• One food recognition application operating on color (RGB 24 bits) frame images

• One person presence detection application operating on color (RGB 24 bits) frame images

• One person presence detection application operating on grayscale (8 bits) frame images

• Includes complete application firmware for camera capture, frame image preprocessing, inference execution

• and output post-processing

• Includes examples of integration of both floating-point and 8-bit quantized C models

• Supports several configurations for data memory placement in order to meet application requirements

FP-AI-VISION1 main feature

STM32H747I-DISCO B-CAMS-OMV

39

• The first part shows how to use the Teachable Machine to train and export a deep learning model, then

STM32Cube.AI is used to convert this model into optimized C code for STM32 MCUs. The last part explains

how to integrate this new model into the FP-AI-VISION1 to run live inference on an STM32 board with a

camera. The whole process is described below:

How to use Teachable Machine to create an image
classification application on STM32

40

• Before the experiment, we need some preparation of software and hardware.

Prerequisites

•STM32Cube IDE

•X-Cube-AI version 7.1.0

•FP-AI-VISION1 version 3.1.0

•STM32CubeProgrammer

•STM32H747I-DISCO Board

•B-CAMS-OMV Flexible Camera Adapter board

•A Micro-USB to USB cable

https://wiki.stmicroelectronics.cn/stm32mcu/index.php?title=AI:How_to_use_Teachable_Machine_to_create_an_image_classification_application

_on_STM32&icmp=tt19900_gl_pron_feb2021

41

• We first need to choose something to classify. You can choose whatever object you want to classify it:
fruits, pasta, animals, people, etc...

• In this example, we will classify ST boards and modules. The chosen boards are shown in the figure
below:

Training a model using Teachable Machine

If you are interested in

replicating this example you

can purchase the ST eval

boards mentioned

42

• Let's get started. Open https://teachablemachine.withgoogle.com/, preferably
from Chrome browser.

• Click Get started, then select Image Project. You will be presented with the following
interface.

Training a model using Teachable Machine

43

https://teachablemachine.withgoogle.com/
https://www.google.com/chrome/

• For each category you want to classify, edit the class name by clicking the pencil icon. In this
example, we choose to start with SensorTile.

• To add images with your webcam, click the webcam icon and record some images. If you have
image files on your computer, click upload and select the directory containing your images.

Training a model using Teachable Machine

44

• Now that we have a good amount of data, we are going to train a deep learning model for
classifying these different objects. To do this, click the Train Model button as shown below:

Training a model using Teachable Machine

45

• If you are happy with your model, it is time to export it. To do so, click the Export Model button. In
the pop-up window, select Tensorflow Lite, check Quantized and click Download my model.

Training a model using Teachable Machine

46

Porting to a target board

• use the stm32ai command line tool to convert the TensorflowLite model to optimized C

code for STM32.

stm32ai generate -m model.tflite -v 2

• The expected output is:

47

Porting to a target board

• use the stm32ai command line tool to convert the TensorflowLite model to optimized C

code for STM32.

stm32ai generate -m model.tflite -v 2

• The expected output is:

This command generates four files

under workspace/stm32ai_ouptut/:

48

• the FP-AI-VISION1 function pack provides a software example for a food classification application

• The main objective of this section is to replace the network and network_data files in FP-AI-
VISION1 by the newly generated files and make a few adjustments to the code.

• If we take a look inside the function pack, we'll start from the FoodReco_MobileNetDerivative
application we can see two configurations for the model data type, as shown below.

• Delete the following files and replace them with the ones from workspace/stm32ai_output:

Integration with FP-AI-VISION1

In Src:

network.c

network_data.c

In Inc:

network.h

network_data.h

49

Updating the labels and display

• From STM32CubeIDE, open fp_vision_app.c. Go to line 125 where the output_labels is

defined and update this variable with our label names:

• While we're here, we'll update the display mode that it shows camera image instead of food

logos. Go around line 200 and update the App_Output_Display function. At the top of the

function, the display_mode variable should be set to 1.

50

Cropping the image

• Teachable Machine crops the webcam image to fit the model input size. In FP-AI-VISION1, the image

is resized to the model input size, hence losing the aspect ratio. We will change this default behavior

and implement a crop of the camera image.

• In order to have square images and avoid image deformation we are going to crop the camera image

using the DCMI. The goal of this step is to go from the 640x480 resolution to a 480x480 resolution.

• First, edit fp_vision_camera.h line 60 to update the CAMERA_WIDTH define to 480 pixels:

51

Cropping the image
• Then, edit fp_vision_camera.c located in Application/.

• Modify the CAMERA_Init function (line 58) to configure DCMI cropping (update the function with

the highlighted code bellow) :

52

Normalization

• The neural network input needs to be normalized accordingly to the training phase. This is achieved by

updating the value of both the nn_input_norm_scale and nn_input_norm_zp variables during initialization. The

nn_input_norm_scale and nn_input_norm_zp variables affect the pixel format adaptation stage. The scale,

zero point values should be set {127.5, 127} if the NN model was trained using input data normalized in the

range [-1, 1]. They should be set to {255, 0} if the NN model was trained using input data normalized in the

range [0, 1]. The food recognition model was trained with input data normalized in the range [0, 1] whereas the

Teachable Model was trained in the range of [-1, 1].

• Edit the file fp_vision_app.c and modify the App_Context_Init function (line 328) to update the scale and zero-

point values (update the function with the highlighted code bellow) :

53

• Compiling the project and then Connect the STM32H747I-DISCO to your PC via a Micro-USB to
USB cable. Open STM32CubeProgrammer and connect to ST-LINK. Then flash the board with the
hex file.

• Connect the camera to the STM32H747I-DISCO board using a flex cable. To have the image in the
upright position, the camera must be placed with the flex cable facing up as shown in the figure
below. Once the camera is connected, power on the board and press the reset button. After the
"Welcome Screen", you will see the camera preview and output prediction of the model on the LCD
Screen.

Testing the model

54

We provide everything to kick off your project

• Wiki by ST is a great forum to learn and

start developing AI on STM32!

• Videos of application examples

• Massive Open Online Course (MOOC)

Hardware and software toolsDesign documentation

• Evaluation platforms for STM32

MCU/MPU

• Extra sensor boards

• Full software suite

Support & Updates

• ST Community: STM32 ML & AI group

• Distributor certified FAE

• Support center

• Newsletter

Developer zoneGetting started

Be guided step-by-

step to learn

STM32 ecosystem

Get started on

application

development and

project sharing

55

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Find out more at www.st.com/stm32ai

http://www.st.com/trademarks
http://www.st.com/stm32ai

