Render the Possihilities

SIGGRAPH2016 q

D Computer Graphics
Interactive Techfliques

ANAHEIM, CALIFORNIA

Render the Possibilities

SIGGRAPH?2016 @ Iy Computer Graphics

Interactive Techniques

Video Pre-processing on Mobile GPU —
A Case Study on Performance and Power
Tuning

QUALCONVW

Jay Yun
Qualcomm Technologies, Inc

Uses standard programming API.

Used by IHVs to accelerate certain camera,
video & vision solutions

— When using GPU yields best result.
Used by OEMs to accelerate native apps.

Application performance benefits from tuning to
specific hardware.

IHV means Independent Hardware Vendor. Example is Qualcomm Technologies Inc.
that makes Snapdragon™ processors.

OEM means Original Equipment Manufacturer. Examples are smartphone
manufacturers.

Tuning applications to specific hardware is not unique to mobile GPUs; even for
discrete GPUs, architecture specific tuning is often required

N

Noise removal \fldheo qualltyt Fisheye de-warping
Image stabilization SR eimen Image stabilization

£\ Depth from stereo

-
360 video stitching HDR processing

For smartphone market, camera applications were the first to adapt GPU Compute
(a.k.a., GPGPU), and for many years remained as the dominant use case for mobile
GPU Compute.

Primary use cases for camera have been noise reduction such as spatial or temporal
denoising, chroma aberration correction, radial noise reduction as well as lens
shading correction.

Image stabilization for camera and drone applications is one of the most widely used
non-rendering GPU application. OpenGL ES is the main APl in such case. Image
stabilization may include rolling shutter effect removal.

Video post-processing is also a key use case where the algorithm tries to remove
artifacts or enhance details after scaling as well as improving color for better user
experience. Many smartphone OEMs provide their own applications in order to
provide differentiating image quality enhancement features.

Recently with popularity of VR, many 360 cameras are gaining traction. These
cameras either apply stitching algorithm at runtime or use post-processing on
smartphone or PC after capture. In some cases, stitching is combined with dewarping
during playback.

HDR means High Dynamic Range. This is an overloaded term; in this context, it
applies to enhancing dynamic range during video capture for security camera

products. Security cameras do not have ability to control the lighting conditions, but
need to be able to record objects that are in shadow clearly, for obvious reasons.

« Compute on mobile GPU is gaining traction,
what can we do to help make it pervasive?

» Performance optimization is one problem we

need to address.

* |n this talk, we will select one use case & show
key optimization techniques.

Want to take
a picture like
this

Instead, it
ends up like
this

New sensors capture long & short exposures for
every frame

» (HUEETT O)

Qualcomm
lll&‘i’llllliﬂlllll snapdragon

« But... this requires additional processing

Typically, raw data from camera sensor is streamed directly to an ISP (Image Signal
Processor) which is a hardware unit that performs series of image processing and
color conversion to produce visually appealing images.

For new sensors that support “HDR” features, the raw data needs to be pre-
processed prior to being streamed to ISP, in order to combine the long and short
exposure frames.

There are many variations on sensor’s HDR features, depending on sensor
manufactures. Sensor manufactures keep advancing this technology in order to yield
better solution that reduces motion artifacts, etc.

In future ISP hardware, HDR processing could possibly become built-in, which
removes the requirement of the additional “software” stage.

Note, most mobile use cases are memory bound
Merge stages to reduce intermediate data traffic
Vectorize and coalesce as much as possible

Find ideal workgroup size
— Improves cache performance
— Enhances latency hiding and overall GPU utilization

Use 16 bit data and lower-precision math

Some of these techniques are standard optimization techniques that benefit many
GPU Compute use cases.

* 10 bits/pix, tightly packed in “MIPI RAW10” format

8 bit 2 bit

— —
PO (MSB) P1 (MSB) P2 (MSB) P3 (MSB)

« Bayer pattern
— Each pixel has 1 color component
— Alternating pattern across row & column

* This is not a recognizable GPU texture format

10

» Multiple stage algorithm: a lot of intermediate data

» Perfreq’t: UHD 30fps for Snapdragon™ 650
« Thermally constrained, so run at nominal clock

UHD is 3840 x 2160, aka “4K”
Running at nominal clock simply means to run at default mode which allows the SoC

to dynamically adjust clock frequency and voltage of the hardware modules in order
to yield best performance/watt outcome. Typically, this means running the clock at
much lower than peak level.

11

Group stages based on data access pattern

Long
exposure
MIPI Color Tone MIPI

Fusion

HDR I
= unpack pre-proc mapping packing |
ort
: .

4 plxels together 2 '
combined to yield 2x2 output

The purpose of this page is to show that for each stage, the developer needs to
identify data packing requirements for input and output.

12

Long
exposure - -
MIPI Color Fusion Tone MIPI HDR
unpack pre-proc mapping packing processed
Short
b —

data
irout A4 1:1 2x2:2x2 3x3:1 1:1 2:2
4 '
l 4:4) (2x2):(2x2) || (3x3):1 ' 2:2 '

L3 1 1
4x2 : 4x2 4x3 : 2

Shown here is the most natural—and easy—way of combining kernels, by paying
attention to data grouping requirements. This allows kernels to be combined without
requiring additional usage of registers, meaning the register usage of the combined
kernel will not be more than the registers used by either of the original kernels.

13

« Store intermediate data in local memory

7
barrier
— Use barrier to synchronize between two stages

— Eliminates data traffic to DDR but may increase
register pressure

Barrier synchronization is required to ensure that all processing from the first stage is

completed before starting the next stage.
This synchronization often comes with a hidden cost, which is the latency required to

reach the synchronization point across all work items working on the first stage.

14

* Profile performance using different x, y sizes
— Cache hit rate is related to WG size.

* local_work_size=NULL may not be the best option

— The driver attempts to pick a reasonable workgroup size
but this will most likely not be the best size.

» Larger workgroups are better at hiding memory
latency but...
— if too large, they may lead to cache thrashing

For 2D workgroup, its shape (e.g., width vs height) is as important as the total size.
Upper limit for the workgroup size of a particular kernel is determined by a number
of factors including register usage (which is related to the complexity of the kernel)
and presence of barrier instructions.

“local_work_size=NULL” is an OpenCL feature. For OpenGL ES, the work group size
needs to be specified in the compute shader.

If the application needs to run on multiple devices, it is important to try different
devices as well.

15

Lower is better

Latency comparison Power comparison*

+12% +11% 6%

SNAPDRAGON SNAPDRAGON SNAPDRAGON SNAPDRAGON SNAPDRAGON SNAPDRAGON
625 650 820 625 650 820

= 1-kemel 2-kemel m 1-kemel 2-kemel

Here, we are showing comparisons of two solutions, “1-kernel” which is the “uber”
kernel that combines all stages into a single kernel using local memory, and “2-
kernel” which does not use local memory, and requires writing intermediate data to
DDR.

Latency comparison chart is showing the performance of these two solutions,
normalized to the 1-kernel case. Performance measurement includes memory reads
and writes and any software overhead for launching GPU kernels.

Power comparison chart is showing the power consumption at battery, normalized to
the 1-kernel case.

These two charts show that the 1-kernel case is more power efficient but has lower
performance compared to the 2-kernel case, likely due to having lower parallelism
from higher register usage.

16

Memory bandwidth reduction is key to good
performance and power efficiency

Use local memory to combine kernels, to reduce

power consumption
Pay attention to WG tuning

Acknowledgement
— Xujie Zhang, Vijay Ganugapati

17

