arm Whitepaper
Post-Quantum Cryptography

Quantum computing is increasingly seen as a threat to communica-
tions security: rapid progress towards realizing practical quantum
computers has drawn attention to the long understood potential of
such machines to break fundamentals of contemporary cryptogra-
phic infrastructure. While this potential is so far firmly theoretical,
the cryptography community is preparing for this possibility by de-
veloping Post-Quantum Cryptography (PQC), that is, cryptography
resisting the increased capabilities of quantum computers.

In this white paper, we explore the background, impact, and ur-
gency of this threat, and summarize the cryptographic schemes be-
ing evaluated. We also provide recommendations on what steps
should be taken today to be prepared for the changes to come, and
discuss how Arm is approaching PQC.

In two technical appendices, the interested reader learns about how
quantum computers could break RSA and ECC and gets an overview
of the main ideas behind lattice-based cryptography, a promising
candidate for quantum safe cryptography.

Short on time? See - What to do now? for concrete guidance.
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How cryptography
secures today’s network
traffic — A primer

To understand the impact of quantum computing on cryp-
tography, it is useful to have an overview of the different
kinds of cryptography mainly used to secure today’s net-
work traffic. This section provides a short summary.

Secure communication overinsecure links

The breadth of today’s connectivity technologies (such
as BLE, Cellular, WiFi) allows communication to happen
almost everywhere, between everyone and everything.
However, while these technologies provide channels for
the exchange of information, those channels are a priori
insecure — that is, they lack some or all of the following
properties:

e Confidentiality: Nobody except the designated com-
municating parties can infer anything about the infor-
mation that is being exchanged.’

e Integrity: Information cannot be modified in transit
without the modification being detected.

e Authentication: The parties know whom they talk to.

If we call a channel with the above properties secure, the
problem thus arises to find constructions for secure chan-
nels from the insecure links provided by the various con-
nectivity technologies. Cryptography can be viewed as
offering tools for a variety of such constructions?, as we
will recall now.

Symmetric Cryptography

Symmetric cryptography builds secure channels from the
assumption of a single piece of pre-shared confidential
information, the symmetric key:

e Symmetric ciphers such as AES or ChaCha construct
confidential channels from a symmetric key.

e Message authentication codes (MACs) such as the hash-

based HMAC or the cipher-based CMAC construct au-
thenticated and integrity protected channels from a
symmetric key.

¢ Finally, combined Authenticated encryption schemes

such as AES-GCM or ChaCha/Poly establish secure chan-

nels from a symmetric key.

Except for a bound on the amount of information that has been
communicated.
This is also called Constructive Cryptography [Mau12].
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Figure 1: Symmetric Cryptography as a black box trans-
forming an insecure channel into a secure channel on the
basis of pre-shared confidential data.

Historically, secure communication could only be es-
tablished via symmetric cryptography, that is, on the ba-
sis of a pre-shared secret piece of information which the
communicating parties had exchanged upfront. The pri-
mary problem with this approach, of course, is the need
to establish the shared symmetric key in the first place.

Public Key Cryptography

Public Key Cryptography® builds secure channels without
any confidentiality assumption (such as the existence of
a pre-shared symmetric key).
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Figure 2: Public Key Signatures as a black box transform-
ing an insecure channel into an authenticated channel on
the basis of pre-shared authentic data.

e Signature schemes such as RSA-PSS, ECDSA or EdDSA
construct authenticated and integrity protected chan-
nels from a piece of authentic public data associated
with each communicating party, called the public key.

e Key establishment protocols such as (EC)DHE construct
shared confidential data from authenticated and in-
tegrity protected channels.

Note that it is highly remarkable that such constructions
exist in the first place: for example, a key establishment
protocol resembles a magic conversation by which the
two communicating parties agree on something that a
passive listener cannot figure out.

3public Key Cryptography is also called asymmetric cryptography.
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Figure 3: Key Establishment as a black box transforming
an authenticated channel into shared confidential data.

The means to reliably distribute public keys is the pub-
lic key infrastructure (PKl). The most prevailing PKI are
X.509 certificate chains, which bootstrap public key dis-
tribution using signatures and a small number of public
keys distributed out-of-band.

Putting it together: TLS and friends

Combining the constructions that symmetric and public
key cryptography provide, one arrives at the following
two-step scheme for establishing secure communication
channels over insecure links:

e Aninitial authentication and key establishment phase
based on public key cryptography authenticates one
or both parties in the communication and establishes
a shared secret between them.

e The actual communication happens in the bulk en-
cryption phase, where the established symmetric key
is used to construct a secure channel using symmet-
ric cryptography.

For example, this approach is taken by the popular
Transport Layer Security (TLS) protocol, and following TLS
terminology the initial key establishment phase is often
called handshake. In this language, the above two-step
approach essentially says: Shake hands first, then talk.”

(How) Do we know it is secure?

Cryptographic schemes are not usually proved secure in
absolute terms. Instead, modern cryptography develops
precise notions of security and uses those notions to for-

mally reason how the claimed security of a particular scheme

follows from an underlying hardness assumption. Such
hardness assumption is usually the statement that a par-
ticular computational problem cannot be solved efficiently,

*In addition to signatures and key establishment, there are also
public key encryption schemes such as RSA-OAEP which could theo-
retically be used to protect the actual traffic, but their inferior perfor-
mance compared to symmetric primitives renders this approach im-
practical. Instead, where still in use, public key encryption realizes the
key establishment phase in the above hybrid strategy, with one party
choosing a secret and sending it to the peer after encryption with the
peer’s public key. This approach, however, comes at the danger of
the sending side choosing insufficiently random secrets, and is nowa-
days mostly replaced by Key Encapsulation Mechanisms (KEM), which
combine random key generation and public-key encryption into a sin-
gle primitive.
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Figure 4: Combining public key cryptography and asym-
metric cryptography to establish secure communication
channels from insecure ones.

and trust in its validity derives from time and effort spent
on them, while a formal proof of their hardness is consid-
ered infeasible. For example, schemes from the RSA fam-
ily rely on the hardness of integer factorization for which
no polynomial time algorithm is known.

It is common for cryptographic schemes to have a fi-
nite lifetime due to gradually decreasing practical secu-
rity resulting from advances in algorithmic research and
increased computational power:

e The hash function SHA-1 was standardized in 1995,
a theoretical collision attack was found in 2004 and
finally put to practice with increased compute power
in2017.

¢ Increasingly large RSA Factoring Challenges are be-
ing solved (the latest one being the factorization of
an 829-bit modulus in February 2020) raising the
bar for what is considered to be a safe use of RSA.

This gradual degradation of security is somewhat expected
and can sometimes, as in the example of RSA, be counter-
acted by increased key sizes of the underlying schemes.

The impact of quantum computing on cryptography,
however, is of a different nature: the reason why the em-
pirical evidence of security is crumbling with the advent
of quantum computing is that the latter introduces en-
tirely new computational capabilities that haven’t been
considered by classical algorithmic research, and whose
limits are hence still to be understood.



How quantum
computing impacts
cryptography

A new computational model

Quantum computing uses phenomena from quantum phy-
sics to perform computation, and the quantum computa-
tional model is an abstraction of the state and capabilities
of such quantum computations which allows us to ignore
the physical details and their realizability — in the same
way as, for example, the model of Turing machines pro-
vides a way to study classical computation independently
from its physical realization. This opens a new field of
guantum algorithmic research, and specifically the ques-
tion arises to what extent the quantum computational
model allows for algorithms solving problems in fewer
operations than classical algorithms.

The impact on public key cryptography

In 1994, Peter Shor [Sho94] discovered that the quantum
computational model allows for the construction of an
efficient algorithm for integer factorization, a highly re-
markable insight for multiple reasons:

e Theoretically, it demonstrated the superiority of quan-
tum computing by exhibiting a problem for which no
efficient classical algorithm is known but which a hy-
pothetical quantum computer can solve efficiently.

e Practically, it is remarkable that the problem demon-
strated to be amenable to significant speedup on a
guantum computer happens to be the problem un-
derlying the widely used RSA cryptosystems.

Moreover, Shor also exhibited an efficient quantum algo-
rithm for the discrete logarithm problem underlying the
popular (EC)DHE key exchange mechanisms.

As a result, Shor’s algorithms therefore demonstrate
that the most popular public key cryptosystems which
our ability to establish secure communication channels
relies upon, are no longer secure within the hypothetical
model of quantum computing. This discovery triggered
interest in quantum algorithms and the question of what
it takes to actually build a quantum computer.

Itis important to note that increasing key sizes, which
can be an acceptable response to gradual degradation of
practical security due to increased compute power, does
not apply to make RSA and (EC)DHE quantum safe: Shor’s
algorithm puts those problems in a different complexity
class altogether, and keys scaled to accommodate for this
would render the schemes impractical.”

>This was entertainingly demonstrated by the pgRSA (post-quan-
tum RSA) proposal, which uses multi-GB keys.
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For the interested reader, Appendix A: How quantum
computers threaten RSA & ECC provides a high-level de-
scription of the quantum computational model and an
outline of how Shor’s algorithm breaks RSA and (EC)DHE.

The impact on symmetric cryptography

The impact of quantum computing on symmetric crypto-
graphy appears to be less critical:

Grover’s search algorithm [Gro96] is a quantum al-
gorithm performing an unstructured search over n ob-
jects in /n steps — a quadratic speedup over the clas-
sically optimal n steps for a full traversal. This implies
that brute force attacks to cryptographic schemes, such
as searching through an entire key space, are potentially
quadratically faster on a quantum computer than on a
classical computer. As a consequence, key sizes might
need to be doubled in the presence of quantum com-
puters, for example by using AES-256 in place of AES-
128. Beyond that, however, the techniques established
to construct symmetric ciphers appear to remain valid
even in the fact of quantum computing. The same ap-
plies to the security of hash functions: there are quantum
algorithms for collision search which are potentially poly-
nomially faster than classical algorithms, but the schemes
and techniques themselves appear to remain valid.

Summary

Today’s network communication is secured through the
combined use of public key cryptography and symmetric
cryptography: the former establishes authentication and
shared secrets, the latter performs the bulk encryption.

Quantum computing threatens the main public key
cryptosystems in use today (RSA and ECC), while it seems
that it will affect symmetric cryptography (such as AES or
the SHA) only in a minor way.

Assuming that practical quantum computers can be
built — the feasibility of which we will talk about below
— it will therefore be necessary to find and deploy cryp-
tosystems for authentication and key establishment that
withstand the quantum computational model. The de-
velopment of such “quantum safe” cryptography is called
Post-Quantum Cryptography (PQC).

Post-Quantum Cryptography vs.
Quantum-Cryptography

Post-Quantum Cryptography is to be distinguished from
Quantum Cryptography, which concerns cryptographic al-
gorithms which make use of quantum phenomena. Post-
Quantum Cryptography, in turn, is concerned with algo-
rithms that run on a classical computer and cannot be
broken even with a quantum computer. We will not dis-
cuss quantum-cryptography in this paper. The study of
gquantum algorithms attacking cryptographic schemes is
called quantum cryptanalysis.



(When) Does it matter?

Today’s public key cryptography will need replacing in the
face of practical quantum computing. But when do we
need to act, and will we be ready? Answering these ques-
tions mainly depends on three factors:

e The characteristics of the system to be protected.
e The progress towards practical quantum computing.
¢ The development of Post-Quantum Cryptography.

The present section describes each aspect in more detail,
but here is the bottom line, in terms of confidentiality:

Suppose we require confidentiality of our data for ¢
years and that quantum computers may break RSA/ECC
in q years. If ¢ > q, we’re in trouble today. Otherwise,
we need to transition to PQC within the next ¢ — c years.
So, if s is the time it takes to bring PQC to life, we are in
trouble if s > ¢ — ¢. Or, in the words of Michele Mosca:
If c+ s > ¢, then worry.

So, should we worry? The confidentiality requirement
c depends on the data, and estimates for g and s are hard
to obtain — we’ll go into details below. However, cau-
tious estimates such as ¢ = 20 (data confidentiality for
20 years) and s = 10 (PQC standardization and deploy-
ment in 10 years) show that even with ¢ = 30 (quantum
computers breaking RSA and ECC in 30 years) it’s time to
think about and prepare the transition to PQC now.

What are you protecting?

Confidentiality of data in transit

Data sent over an encrypted channel may be intercepted,
stored and retroactively decrypted if key material is later
exposed through information leakage or through the ad-
vent of an effective attack against the underlying cryp-
tographic scheme. Confidentiality is therefore at risk as
soon as an attack against the underlying cryptography is
conceivable within the timeframe during which the data
needs to stay confidential.

It is important to understand that preventing such a
breach of confidentiality requires changing cryptographic
systems ahead of time, well before they can actually be
practically attacked.

Example: Suppose a system uses a security protocol run
over an insecure channel, such as TLS over the inter-
net. Assume that the data has to remain confidential
for 20 years, and that a practical threat to the proto-
col or the underlying cryptography is conceivable in 25
years. Then the system needs to be upgraded no later
than 5 years in the future to maintain confidentiality of
the data it will handle at that point. If the data has to
remain confidential for more than 25 years, it is at risk
today and systems should be upgraded immediately.
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Concretely, quantum computing puts the security of
today’s prominent key establishment mechanisms RSA and
(EC)DHE at risk. Those schemes must therefore be re-
placed as soon as the data they protect is required to be
confidential for longer than the minimal feasible time for
guantum computing to become practical. We will look
into this in Practicality of quantum computing below.

Confidentiality of data at rest

In addition to the security of ephemeral encryption used
in protocols such as TLS, we have to consider the confi-
dentiality of encrypted data at rest. Such data will usu-
ally be encrypted with a symmetric encryption scheme
such as AES, and as discussed in The impact on symmetric
cryptography, those schemes are currently expected to
remain suitable in principle in the face of quantum com-
puting, but may require an increase of key sizes.
Confidentiality of encrypted data at rest is thus at risk
if both (a) and either (b.1) or (b.2) hold in the following:

(a) Anattacker hasgained accessto the encrypted data
itself (for example, through a data breach) or inter-
cepted a non quantum safe channel through which
the encrypted data was communicated (for exam-
ple, an RSA/ECC based TLS communication between
systems storing the encrypted data).

(b.1) The attacker has also intercepted a non quantum
safe channel establishing or communicating the sym-
metric key protecting the encrypted data at rest.

(b.2) The symmetric encryption scheme uses key sizes
which could make it vulnerable to polynomially im-
proved quantum algorithms such as Grover’s algo-
rithm — for example, AES-128.

Preventing (b.1) is an instance of protecting data in
transit: at some point before the lifetime of the data at
rest surpasses the time towards practical quantum at-
tacks, it needs to be re-encrypted with a key that is estab-
lished and communicated solely through quantum safe
cryptographic mechanisms. This also prevents (b.2) if the
re-established keys are sufficiently long. Note that in this
approach, the encrypted data chunks themselves need
not be considered confidential.®

Data access

An authentication mechanism may fail to provide access
control in the future if key material is exposed or if an at-
tack against the underlying primitive is found. Concretely,

®An alternative approach is to treat the encrypted data itself
as confidential and only exchange it either out of band or through
through quantum safe channels. In this case, it is sufficient to re-
encrypt the data with a key established and communicated through
quantum safe mechanisms at any point prior to quantum computing
practically threatening today’s public key cryptography.



guantum computing threatens today’s prominent signa-
ture schemes RSA and (EC)DSA, so it must be ensured
that those schemes are no longer in use when quantum
computing has become practical.

To mitigate the threat to authentication, authentica-
tion software should be kept upgradable to allow replace-
ment once practical attacks become available.

Note that in contrast to the threat to confidentiality,
itis not necessary to upgrade the software ahead of time.
However, where software upgrades are not possible, a
guantum safe authentication mechanism needs to be de-
ployed today.

Example: Consider a long-lived loT device. To allow
software to be patched over time the system allows
remote firmware upgrade. The firmware itself has to
be signed by the vendor to be accepted by the device,
and special firmware verification code is responsible for
checking the validity of the signature. If this firmware
verification code itself isimmutable, a quantum safe sig-
nature mechanism needs to be deployed today. Section
Problem: Firmware updates elaborates on this.

Practicality of quantum computing

Quantum computing received widespread attention when
Google [Aru+19] announced quantum supremacy: they
built a 54-qubit quantum computer capable of perform-
ing an artificial computational task in 200s for which it
was argued that no available classical computer would be
able to solve it in less than 10,000 years.

While quantum supremacy was an important mile-
stone, today’s quantum computers are still far away from
being able to break RSA or ECC. Specifically, from an en-
gineering perspective, the following problems need to be
overcome to reach the point where quantum computers
can run complex quantum algorithms such as Shor’s:

(a) Controlling a larger number of physical qubits.

(b) Controlling errors accumulated during operation via
quantum error correction, ideally giving rise to error-
free logical qubits built from a set of physical qubits.

(c) Providing quantum random access memory (QRAM)
for intermediate results and for efficient conversion
of classical data into quantum states.

Solving those challenges is going to be a very expensive,
multi-year process, funding and enthusiasm for which will
also depend on when “practical” quantum supremacy will
demonstrate that quantum computing can solve compu-
tational problems of commercial value. Interestingly, the
very transition to Post-Quantum Cryptography might be
a weakening force in the development of quantum com-
puting which PQC protects against.
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Ultimately, there are too many technical, economi-
cal and political unknowns to allow for an accurate pre-
diction of when we might see quantum computers ca-
pable of running Shor’s algorithm, but estimates range
from 10 years in the worst case to 30 years or more in
the best case. While this might seem far away, it is im-
portant to realize that dimensions of the same order of
magnitude apply to the confidentiality requirements of
data and communications — as discussed in the previous
section What are you protecting? — and to the develop-
ment and transitioning to Post-Quantum Cryptography—
as we’ll discuss in the next section.

We highly recommend [NM19] for further reading.

Availability of quantum safe cryptography

Given a system’s security requirements, as well as a guess
for when quantum computing could break RSA/ECC, we
infer when Post-Quantum Cryptography needs to be avail-
able and put in place. For example, if we predict a quan-
tum computer running Shor’s algorithm in 30 years, and
we would like our data to remain confidential for 25 years,
Post-Quantum Cryptography should be made available in
the next 5 years. But what does availability entail?

Bringing cryptography to life

Introducing cryptographic change is a long-lived and multi-
faceted process, encompassing at least the following:

) Cryptographic research

) Standardization

) Development of secure implementations

) Platform development (e.g. accelerators or ISA)
e) Integration into existing infrastructure

) Public Awareness

) Education

) Deployment

What’s more, most of those aspects multiply with the
number of proposals for “quantum safe” cryptography, of
which there are dozens, as we will see. In other words:
developing and transitioning to PQC is a lot of work.

In order to guide and structure these parallel streams
of research on Post-Quantum Cryptography and narrow
down the range of PQC primitives, standards bodies have
launched various projects, working groups and competi-
tions around PQC, the most prominent of which is the
NIST PQC project which we will look into next.

NIST PQC project
Overview

In December 2016, the US National Institute of Standards
and Technology (NIST) initiated the PQC project guiding
the development, evaluation and standardization of pub-
lic key cryptography secure in the advent of quantum com-
puters. We will refer to this process as the NIST PQC


https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

project. The goal is the standardization of a set of quan-
tum safe key encapsulation and signature schemes.

Background

NIST has a history of conducting processes leading to the
standardization of cryptography: examples are the stan-
dardization of the Rijndael block cipher as AES in 2001
and the standardization of the Keccak hash function as
SHA-3 in 2015. NIST currently also runs the Lightweight
Cryptography competition as well as The NIST hash-based
signatures project described below.

Timeline

The timeline for the NIST PQC project is as follows:

v’ Call for proposals: Dec’16 - Nov "17
Round 1: Dec’17 - Jan’19, 69 complete submissions.

Round 2: Jan’ 19 - Jul '20, 26 candidates remaining.

v

v

Round 3: Since July 2020, 15 candidates remaining, 7
“finalists”, and 8 “alternate candidates”.

4

Draft standards from finalists track available: '22-'23.

I

Round 4: TBD, focusing on “alternate” track

= Potential amendment of standard: TBD

Current status and expected outcome

On July 22nd 2020, NIST announced the 15 candidates
for Round 3 of the NIST PQC project. They’re split in two
separate tracks: a ‘finalists’ track comprising 7 schemes
— 4 key encapsulation mechanisms and 3 signature sche-
mes — and an ‘alternate’ track comprising 8 schemes — 5
key encapsulation mechanisms and 3 signature schemes.

At the end of Round 3, NIST expects to standardize
one or two KEMs and one or two signature schemes from
the finalists track. The candidates from the alternate track
will be subject to further analysis in a fourth round, and
may be added to the standard at a later point.

Considering the impact of previous projects, e.g. the
standardization of AES and SHA-3, it is expected that the
outcome of the NIST PQC project will have a major impact
on which PQC schemes will find their way into widespread
use.

The NIST hash-based signatures project
Problem: Firmware updates

As explained in Section What are you protecting?, there
is potential need to use PQC today when deploying long-
lived systems that cannot be updated.

One important example of long-lived immutable au-
thentication arises in the deployment of loT devices with
firmware update mechanisms: in this context, the firm-
ware verification code itself might not be updatable. To
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prevent those devices from being compromised when quan-

tum computers become a reality, a quantum safe signa-
ture mechanism should be used for firmware updates.
Luckily, while general-purpose quantum safe signa-
ture schemes are stillin development under the NIST PQC
project, the infrequent use of firmware signatures allows
us to consider the use of a restricted but more mature
class of signature schemes called stateful signatures.

The project

NIST runs the Stateful Hash-based Signatures project, the
goal of which is to standardize one or more stateful hash-
based signature schemes. Those are very mature signa-
ture schemes, but they come with two severe limitations:

e The private key evolves with every signature, and ac-
cidental duplicated use of the same private key breaks
the security of the scheme.

e They are finite-use: after a pre-defined number of
signatures and associated private key evolutions, the
private key becomes unusable.

While those properties render stateful hash-based signa-
tures unsuitable for many domains — and exclude them
from being considered in the NIST PQC project —they are
potentially acceptable in the aforementioned use cases.

Expected Outcome

It is strongly expected that the project will result in the
standardization of two schemes called LMS and XMSS,
and NIST has already published a draft standard.

The NIST PQC project is only the beginning

A standard is only one step in the transition towards PQC:
hardware and software implementations need to be pro-
vided, integration of PQC into standards such as TLS and
X.509 developed and implemented, tests run at various
scales. Then, with sufficient public awareness of the need
for PQC, it will gradually find its way into mainstream use.

The potential duration of this process should not be
underestimated: for example, ECC was proposed in 1984,
standardized as a standalone primitive in 1999 and 2000,
integrated into TLS in 2006, and despite smaller keys and
lower computational complexity than RSA, it took over
a decade for it to become widely supported and used.
Even today, the majority of server certificates on the in-
ternet use RSA sighatures. A more encouraging exam-
ple is TLS 1.3, which was standardized in 2018 and as of
August 2020 is already supported by 32% of major web
servers’. In contrast to ECC and TLS 1.3, though, PQC
affects performance in a negative way (see Resource us-
age: No “one size fits all”), which will likely slow down its
adoption further.

"Source: SSL Pulse


https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://www.nist.gov/programs-projects/lightweight-cryptography
https://www.nist.gov/programs-projects/lightweight-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/call-for-proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/Projects/stateful-hash-based-signatures
https://csrc.nist.gov/News/2019/draft-sp-800-208-stateful-hash-based-sig-schemes
https://www.ssllabs.com/ssl-pulse/

Libraries for PQC

There are a number of libraries to choose from when bench-

marking and testing PQC primitives, including:

e libpgcrypto consolidates implementations from NIST
PQC submissions, providing a unified APl and testing
framework. It is part of the PQCRYPTO project.

e OpenQuantumSafe (OQS) provides both a PQC library
libOQS and anintegration of the supported PQC prim-
itives into OpenSSL and OpenSSH.

e pgm4is a PQC library for Cortex-M4, including a test-
ing and benchmarking framework for the STM32F4
Discovery board. It toois part of the PQCRYPTO project.

e The SUPERCOP benchmarking framework contains nu-
merous optimized implementations of PQC primitives.

This list is for convenience of the reader only and is
not an endorsement by Arm.

Taxonomy of
Post-Quantum
Cryptography

In this section, we give an overview over the main classes
of cryptographic primitives that have been suggested for
Post-Quantum Cryptography. The purpose is solely to
give the reader an impression of the varied landscape of
PQC and itis not assumed that the names of the different
classes mean anything to the reader. Readers interested
in some technical content will find a short introduction to
the ideas behind lattice-based cryptography in Appendix
B: An introduction to lattice-based cryptography.

Overview

While numerous proposals for quantum safe public key
cryptography have been brought forward during the NIST
PQC project, promising candidates can roughly be cate-
gorized as follows:

Lattice-based cryptography*

— Unstructured
— Structured*

Code-based cryptography*

— Goppa-codes*
— Quasi-Cyclic codes

e Supersingular elliptic curve cryptography
Multivariate cryptography*
Public-key cryptography from symmetric primitives
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The 15 candidates remaining in Round 3 of the NIST
PQC project cover all of those categories, but only the
categories marked with an x are represented by candi-
dates in the finalist track of Round 3 — see Figure 5.

As can be seen, 5 of the 7 finalists of the NIST PQC
project are based on structured lattices, and it is con-
sidered highly likely that at least one structured-lattice
based key encapsulation mechanism and one structured-
lattice based signature scheme will be standardized at the
end of Round 3.

Isogeny-based
.l Unstructured lattices
’ Structured lattices

Figure 5: Categorization of remaining candidates of
Round 3 of the NIST PQC project. Outer circle: Finalist
+ Alternate track. Inner circle: Finalist track only. Note
the dominance of Structured Lattices.

Code-based

Multivariate

Symmetric

Maturity

Most PQC families are new in the practical sense that
they are not currently in widespread use, nor do they
rest on the same foundations as today’s prevalent cryp-
tography — the only exception is public key cryptogra-
phy based on symmetric primitives, such as hash-based
signatures. Theoretically, however, they all predate the
increased focus on Post-Quantum Cryptography as trig-
gered by the NIST PQC project by multiple years:

e Code-based cryptography goes back to McEliece’s work
in 1978 [McE78], using so-called Goppa-codes. It is
considered secure but has not found widespread use
because of its large keys. The use of quasi-cyclic codes
to reduce key sizes was first considered in 2005 [Gab05].

e Hash-based signatures (which falls under the last cat-
egory) go back to Lamport-Diffie and Merkle in 1979
[Lam79; Mer79], and they are attractive since their se-
curity is based on the existence of secure hash func-
tions alone.

e “Unstructured” lattice-based cryptography has its roots
in a seminal paper by Ajtai in 1996 [Ajt96]. The famous
“learning with errors” (LWE) problem, which lies at the
heart of many lattice-based PQC schemes, was intro-
duced by Regev in 2005 [Reg09].
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e The more efficient sibling of unstructured lattices are
so-called “structured” lattices. The NTRU family of cryp-
tographic schemes was introduced in 1996, while the
number-theoretic “ring learning with errors” (RLWE)
[LPR13] variant of the LWE problem was first consid-
ered for cryptographic purposesin 2010. The increased
efficiency of structured lattice based schemes comes
at the cost of a less well studied hardness assumption,
and quantum algorithmic progress has been made in
this field recently [CDW16], sending a note of caution.

e Supersingular elliptic curve cryptography is a relatively
young field: the use of supersingular elliptic curves for
cryptography was first proposed in 2011 [JD11].

¢ Multivariate cryptography was first proposed by Mat-
sumoto and Imai in 1988 [MI188], and the main ideas
underlying some of the NIST PQC candidates in this
field were developed in the late 1990’s.

The ideas behind many PQC schemes are therefore
not new. Most concrete instantiations proposed for the
NIST PQC project, however, are young, and carefully re-
viewing parameters and security arguments for each can-
didate is a time and resource consuming collaborative un-
dertaking. During the two completed rounds of the NIST
PQC project, the review process has uncovered numer-
ousissuesin proposed PQC schemes, and it may well con-
tinue to do so in the remainder of the NIST PQC project.

Beyond the abstract security of cryptographic sche-
mes, questions of implementation security arise, for ex-
ample: Which schemes lend themselves to side-channel
resistant (for example, constant-time) implementations?
What are potential pitfalls? How can we test or verify
the correctness of an implementation? Answering those
guestions is essential for the development of trustwor-
thy PQC implementations and an active area of research.
See e.g. [PQC19] for an interesting discussion.

Until the review process has led to sufficient confi-
dence in a set of PQC schemes and their implementa-
tions, the use of Post-Quantum Cryptography today has
to be approached with great caution.

Hybrid modes

Where long-lived data requires protection by quantum
safe cryptographic mechanisms today or in the near fu-
ture, so-called hybrid schemes should be used. Those
hybrids combine a classical scheme like ECC with one or
more conjecturally quantum safe PQC schemes and are
therefore expected to be at least as secure as the chosen
classical scheme.®

Various standards for the integration of such hybrid
modes into security protocols such as TLS [CC20; SFG20;

8Germany’s Federal Office for Information Security has re-
cently recommended the use of hybrid modes with the mature
but resource-expensive schemes McEliece (Round 3 finalist) and
FrodoKEM (Round 3 alternate) where quantum safe cryptography is
required already today [BSI20].
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CC20] or X.509 [Kam+18; Bin+17; Tru+18] are in active
development.
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Figure 6: Public key size and Encapsulated Secret size for
Key Encapsulation Mechanisms from Round 3 of the NIST
PQC project. Filled markers represent the finalist track.

Resource usage: No one size fits all"

In this section we survey the performance characteristics
of the PQC families mentioned above. The takeaway is
that there are no candidates for PQC which come close to
current public key cryptography in terms of both size of
cryptographic material and performance. Instead, each
family has its strength and weaknesses, making it more
suitable for some applications, and less so for others.

As a reference, we consider RSA and ECC: RSA-2048
uses keys and ciphertexts/signatures of size 256B, while
for Curve25519 and Ed25519 they are as small as 32B.
Moreover, optimized implementations allow for the use
of ECC on microcontrollers which are constrained both in
terms of their memory and computational abilities.

Now to the numbers for PQC: Figures 6, 7, 8, 9, 10
give an impression of the resource characteristics for the
Key Encapsulation and Signature schemes considered in
the two tracks of Round 3 of the NIST PQC project, grouped
by the family of schemes.” °

Note: The numbers underlying those graphs are for one
specific platform. Moreover, NIST PQC candidates are
evolving over time, both in terms of their specification
and in terms of optimized implementations for various
platforms. Different platforms and/or better (future)
implementations will likely lead to improvements.

9Source: SUPERCOP benchmarking framework, version
supercop-20200702, machine aarch64; A53 (410£d034);
2018 Broadcom BCM2837B0O; 4 x 1400MHz; pi3bplus.

9The logical size of cryptographic material is not necessarily a
lower bound on an implementation’s RAM usage, since it might be
possible to process data gradually. For example, it has been demon-
strated that the SPHINCS signature scheme can be implemented using
16kB of RAM despite signatures being 41kB in size [HRS15].


https://bench.cr.yp.to/

O Quasi-Cyclic codes
I Goppa codes
oy Unstructured lattices
10° 4 4 Structured lattices
/\ lsogenies
5 (O RSA (not PQ-safe) ‘R’ﬁ}
g Y% ECC (not PQ-safe) qp 'R
& 10 S
Q © ™
> o
¥ ) (@]
g o
o 3 | |
8 10 <>.,
102
w
T T T T T
102 103 104 10° 106

Public key (Bytes)

Figure 7: Public key size and Secret key size for Key En-
capsulation Mechanisms from Round 3 of the NIST PQC
project. Filled markers represent the finalist track.

¢ Structured lattices
Hash-based signatures

106 4 Y¢ ECC (not PQ-safe)
Multivariate
- 10° 4 0
m o)
g Q
s | o
o 104 ol
5 (0]
©
g P 4
@103 *
<o
2
10 ¥ o | &
10t T T T T T
10! 10? 103 104 10° 106

Public Key (Bytes)
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schemes from Round 3 of the NIST PQC project. Filled
markers represent the finalist track.

The following rough observations can be made:

¢ |sogeny-based cryptography comes closest to RSA/ECC
in terms of the size of cryptographic material, with key
and ciphertext size of around 400B for SIKE-p503. Its
weakness is the large computational complexity.

¢ Code-based schemes often have large public keys (most-
ly between 10kB and 1MB), but score with smaller pri-
vate keys or ciphertexts. For example, the McEliece
schemes have short 128B ciphertexts, while schemes
based on quasi-cyclic codes have short private keys.

e Most multivariate signatures have large public keys (be-
tween 10kB and 1MB) but offer very small signatures.

e Structured Lattices have given rise to a large number
of PQC proposals with acceptable performance char-
acteristics in any metric.

¢ Candidates based on unstructured lattices pay for their
stronger mathematical foundations with performance

Copyright ©2020 Arm Limited (or its affiliates). All rights reserved.
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penalties of around an order of magnitude compared
to their structured siblings.

¢ Hash-based signatures schemes have small public keys,
but comparatively large signatures.

We conclude that for every metric there are candi-
dates performing well in that metric, but that no candi-
date PQC scheme comes close to the characteristics of
classical public key cryptography in all of them.

Judging resource characteristics only, structured lat-
tices appear to hit a sweet spot: their computational com-
plexity is in the range of ECC, and keys of a few kB are
likely practical for most platforms, despite being more
than an order of magnitude larger than those of ECC.



What to do now?

Quantum computing threatens the public key cryptosys-
tems in use today, and a variety of proposals for quantum
safe cryptography are being developed and scrutinized
under the guidance of the NIST PQC project. However,
draft standards are not expected before 2022/2023, and
while candidates have been narrowed down significantly
for Round 3 of the NIST PQC project, one cannot yet pre-
dict which precise schemes will ultimately prevail.

In this state of uncertainty, it is premature to deploy
systems statically bound to the use of a particular PQC
primitive: doing so not only introduces the risk of the sys-
tem failing to meet its security goal due to advances in
cryptanalysis, but also endangers interoperability if the
chosen scheme does not prevail.

Recommendation:
Do not rely on pre-standardized cryptography.

Step 1: Know your data

Define and track which data needs protecting and for how
long it has to stay confidential. Understand which sys-
tems are involved in generating, processing and commu-
nicating the data, and estimate those systems’ lifetimes.
Finally, assess which key establishment, encryption and
authentication schemes protect against unsolicited access,
and estimate their lifetime.

The availability of such data and algorithm ‘expiration
labels’ can then be used to implement security infrastruc-
ture which ensures that data is protected by cryptogra-
phic mechanisms that are expected to be secure for the
lifetime of the data. As a result, systems would in partic-
ular:

e Switch to quantum safe schemes for the establish-
ment of keys used to secure the communication of
confidential data, before the lifetime of the data sur-
passes the time towards practical quantum attacks.

¢ Switch to quantum safe authentication schemes be-
fore classical authentication schemes become vulner-
able to practical quantum attacks.

e Re-encrypt encrypted data at rest with a fresh key es-
tablished and communicated through quantum safe
schemes, before the lifetime of the data surpasses
the time towards practical quantum attacks.

See What are you protecting? for more information.

Step 2: Crypto-agility

Ensure that security infrastructure supports changing the
available cryptographic schemes and their assessment of
security. For example, designers of loT systems should
ensure that devices support remote firmware upgrades.

Copyright ©2020 Arm Limited (or its affiliates). All rights reserved.

Step 3: Overprovision resources

Crypto-agility is only useful if your system is able to ac-
commodate future cryptographic primitives. As we have
seen in Resource usage: No “one size fits all”, PQCis more
resource hungry than classical crypto, soitisimportant to
overprovision systems with sufficient resources so they
can host whatever PQC scheme(s) prevail.

It is likely that Round 3 of the NIST PQC project will
lead to the standardization of structured lattice schemes:
other Round 3 finalists have large public keys which limit
their uses, while NIST aims to offer schemes that cover a
wide range of applications. Schemes based on structured
lattices have similar performance to ECC, and keys of a
few kB seem acceptable even on smaller systems:

Recommendation: At the least, we recommend sys-
tems be overprovisioned to be able to host the Round
3 finalists based on structured lattices.

However, as mentioned before, schemes based on
structured lattices pay for their comparably small key sizes
with their reliance on assumptions whose hardness on a
guantum computer is not yet well understood, and for
which recent progress has been made.

Recommendation: Where possible, we recommend
systems be overprovisioned to also be able to host al-
ternate track candidates of Round 3 of the NIST PQC
project, in particular as the unstructured lattice key en-
capsulation scheme FrodoKEM or the hash-based sig-
nature scheme SPHINCS+.

Step 4: Use stateful hash-based signatures
for immutable authentication

Use the stateful hash-based signatures LMS/XMSS for au-
thentication mechanisms that cannot be updated, such
as immutable firmware verification code. See Problem:
Firmware updates.

Step 5: Trial the use of PQC

Assess crypto-agility and the ability to run various PQC
primitives, as well as security infrastructure such as TLS
building on them, in a test environment.

Hybrid modes are potentially even suitable for in-field
use.'' However, don’t forget about implementation se-
curity when using hybrid implementations and ensure that
the underlying classical implementation is well-established
and considered secure.

See Libraries for PQC for references.

1A well-known example for such a test are Google’s and Cloud-
flare’s experiments trialling the use of hybrid modes in TLS.



What is Arm doing?

Arm is following the numerous aspects of research on
PQC and the NIST PQC project very closely. Moreover,
Arm is actively working on the following topics:

e Armis contributing to the development of the lattice-

based CRYSTALS-Kyber key encapsulation scheme, which

reached the finalist track of Round 3 of the NIST PQC

project. Armis also involved in NewHope, which reached

Round 2 of the NIST PQC project.

e Arm is working to ensure that promising PQC sche-
mes work well on Arm technology.

e Armis exploring support for PQC in the Mbed TLS se-
curity software stack, with emphasis on usability on
resource constrained loT devices.

e Armisinvestigating PQC within the context of the PSA
Certified security framework and open security stan-
dards such as the IETF working group for Software
Updates for Internet of Things (SUIT).

For more information, contact pgc-whitepaper@arm.com.

Appendix A: How
guantum computers
threaten RSA & ECC

In this section, we give an overview of how the quan-
tum computational model allows for the construction of
polynomial-time algorithms breaking RSA and ECC.

The exposition is occasionally deliberately imprecise
at the benefit of brevity and intuition, and the goal is that
the reader will get an impression of the main ideas and
share our fascination for the field. We refer to [NC11;
NM19] for more information.

We assume familiarity with and readiness for some
mathematical notation, as well as familiarity with the no-
tion of a group. Z/nZ denotes the ring of integers mod-
ulo n, where addition and multiplication are computed
modulo n: for example, 3 -5 = 15 = 2in Z/13Z, or
3-5=15=0inZ/15Z. F, is another name for Z /pZ
in case pis a prime.

The hidden subgroup problem

Both RSA and the discrete logarithm problem can be re-
duced to special cases of what is called the hidden sub-
group problem, and Shor’s algorithm provides a strategy
for solving the latter. We begin by recalling the RSA and
discrete logarithm problems.
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Problem (RSA factoring problem). Given the productn =
p - q of two large primes p, q, find p, q.

Problem (Discrete Logarithm Problem — DLP). Given a
group G and elements g,h € G with h = ¢ for some
a € 7Z, find such an a.

Classically, the group G is either a subgroup of the
multiplicative group of a prime field IF,, or a subgroup of
the group of points on an elliptic curve.

The main observation is that both the RSA factoring
and the DLP problem can be reduced to finding the peri-
odicity of a known function:

Observation. The Discrete Logarithm Problem for (G, g, h)
reduces to finding the periodicity of the function

fagh: (o, 8) — g*/B’ L x 7 — G.
Namely, for h = g7 the periodicity of fg g is (7, 1):

fagn((@,B)+ (v,1)) = g7 /pPH
=g*/h’ - g7 /h
= fG,g,h(CY,ﬁ).

Observation. The RSA factoring problem reduces to find-
ing the periodicity of the function

fng:er—a®:Z — Z/nk
forx € Z/nZ with gcd(z,n) = 1.

Hereisthe argumentina nutshell: If f;, ; is d-periodic
and 1 # x € Z/nZ with ged(x, n) = 1, we have

Now, for 75% of all x, all such d will be even — we omit
the proof here — so going through d, d/2, d/4, ... we
then find f s.t. y := 2/ # 1 and y? = 22/ = 1. In other
words, y? —1 = (y—1)(y +1) is a multiple of n, and for
50% of choices of x this will give away the factorization
of nviap = ged(y £ 1,n) or ¢ = ged(y + 1,n) — again
we omit the details.

Abstracting from both observations, we therefore gain
interest in understanding the following problem:

Problem (Hidden Subgroup Problem). Assume that we
are given a function f : G — X from some abelian group
G to a set X, and that there is a subgroup H C G such
that f is H-periodic, i.e. f(x +t) = f(x) if and only if
t € H. The hidden subgroup problem is to find H.

The above observations can therefore be restated as
saying that the RSA factoring and the DLP problem can be
reduced to the hidden subgroup problem for G = Z and
G =7 x Z, respectively.

We next explain how the hidden subgroup problem
can beapproachedinthe quantum computational model.
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The state space of quantum computing

The unit of information in classical computing is the bit,
which can have value 0 or 1 — in other words, the state
space of a single bitis {0, 1}. Similarly, the state space of
n bits is {0, 1}", with each bit being either 0 or 1.

In (universal) qguantum computing, in turn, the basic
unit of information is the qubit. In contrast to a bit which
is either in state 0 or in state 1, a qubit is in state O or 1
only with some probability — as a simplified model, one
can think of the state space of a single qubit as the set
of probability distributions on {0, 1}. The classical states
0 or 1 can be viewed as “pure” qubit states where the
qubit is certainly in state 0 or 1, respectively, but equally
a qubit might be 0/1 with probability 75%/25% — those
states are said to be a superposition of the classical states.
Similarly, a configuration of n qubits can be in any clas-
sical/pure state z € {0, 1}" with some probability, and
a simplified model for the state space of n qubits is thus
the space of probability distributions on {0, 1}".%?

The actual state space model for a qubit adds a phase
shift to the probabilistic model: for a single qubit, the
state is not a pair (po, p1) of probabilities for state 0 and
1, respectively, but a pair of complex numbers (g, 1) €
H := C? such that |ag|? + |a1|?> = 1, and the p; are re-
covered as |;|2.*> The usual notation is ag|0) + a|1)
with |0) = (1,0) and |1) = (0, 1). Similarly, the state
space for n qubitsis alinear combination 3 1 13 Qz|2)
suchthat )", |az|* = 1, and the underlying probabilities
are recovered as |, |2. Valid state transitions between n-
qubit states are modeled as length-preserving (unitary)
linear maps.**

A summary of the various views on classical and quan-
tum state spaces is given in Figure 16.

For the rest of this chapter, we will geometrically de-
pict qubits by displaying pure states as points and super-
positions as sets of colored points. For example, the state
of three qubits can be interpreted as a subset of cube of
unit length as depicted in Figure 11, or the state of four
gubits can be interpreted as a subset of a square of length
4 as depicted in Figure 12. In general, roughly speaking
an entire subset of a k-dimensional object with [ bits pre-
cision in each dimension can be represented by a single
kl-qubit configuration. It is this ability to represent entire
subsets where classical computing allows us to represent

2Already in this simplified probabilistic model one can observe
the important property of quantum entanglement: describing the
state of n+m qubits is not equivalent to individually describing an n-
qubit and an m-qubit state. In probabilistic terms, the states that can
be decomposed in this way correspond to probability distribution on
{0, 1}™*™ where the first n and last m coordinates are independent,
but not every distribution on {0, 1}™*™ has this property.

3The state space of just a single qubit is of remarkable complexity
and beauty: it is a 3-dimensional sphere, and ignoring phase shifts
reduces it to the 2-dimensional Bloch sphere by means of the Hopf
fibration.

*The complex-linear model allows us to observe another impor-
tant property, namely no-cloning: the cloningmapx +— z®x : H —
H ® H is not linear.
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Figure 11: 3-qubit states as subsets of the cube {0, 1}3.
Left: pure. Right: non-pure/entangled/in superposition
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Figure 12: 4-qubit states as subsets of the 4 x 4-square
{0,1}* = {0,1,2,3}2 Left: Uniform subset with equal
probability for all points. Right: Non-uniform distribution.

only individual points what gives quantum computing its
power.

Finally, a qubit can be measured. Measurement ran-
domly collapses a qubit into one of the pure states |0)
or |1), with the probabilities for each represented by the
qubit state itself. Forexample, on measurement, the qubit
210) + #[1) would collapse to |0) with probability 55 =
36% and to |1) with probability 2 = 64%.

The HSP on a Quantum Computer

The blueprint to approach the hidden subgroup problem
in the quantum computational model is remarkably sim-
ple and we will describe it in this section.

Assume the context of the HSP: f : G — X is a
function with periodicity H C G, and we would like to
find H. Recall that f having periodicity H means that for
x,t € Gwehave f(x +t) = f(x) preciselyift € H.

Step 1: Uniform superposition over domain

We start with a qubit state representing G uniformly. That
is, each z € G occurs equally likely with probability 1/|G|.
The state is depicted on the left in Figure 13.*°

Step 2: Compute f in a separate register

In the second step, we "tag’ each z with its image f(z)
under f. This is, we apply  — (z, f(x)) to the uniform
state constructed in the previous step. This state is de-
picted on the right in Figure 13.%°

15 f . 1
Algebraically, this is the state > |z).
& y MI€G| >
16 ’ |
Algebraically, this is > .
g Y, \/@ = |‘T>|f($)>
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Figure 13: Left: Uniform superposition of domain G.
Right: Applying x — (x, f(x)) ‘tagging’ each point with
itsimage under f. Different colors represent different val-
ues under f.
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Figure 14: Various level-sets of periodic function af-
ter measuring value-register in uniform superposition of

(z, f(x)).

Step 3: Measure the tag to obtain level-set

Given the superposition over (z, f(x)), we now ‘mea-
sure’ the qubits describing the value f(z). This collapses
the superposition of all (x, f(x)) to a superposition of
those (z, f(z)) where f(x) isarandom but fixed value in
the image of f. That is, we obtain a random, non-empty
level-set f~1(f(z)) = x + H for some z € G. Some of
those states are depicted in Figure 14.%/

Step 4: The Quantum Fourier Transform

At this point, we have constructed the superposition of
a random level set x + H. Those level sets are all H-
periodic in the sense that shifting them by t € H does
not change them — this is depicted by the dashed arrows
in Figure 14 — and the goal is to extract this periodicity.

Extraction of periodicity is a job for the Fourier Trans-
form, offering conversion between time to frequency do-
mains, the numerous applications of which the reader
might have come across before — as a nice example, see
the Tide-predicting machine. In the context of quantum
computing, itis a particular powerful tool since the Fourier
Transform can be implemented in polylogarithmic time
on a quantum computer — this is known as the Quan-
tum Fourier Transform (QFT).

We are omitting the details here as they would go be-
yond the scope of this article, but the interested reader
is encouraged to look into [RP11, Chapter 7.8] or [NC11,
Chapter 5] for details.

Y algebraically, thisis —~—= > |z + t)|f(z)) for some x € G.
IHI et
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Step 5: Measure & Repeat

At this point, we have constructed the superposition over
the periodicity subgroup H that we are trying to deter-
mine. Measuring this state gives a single random ele-
ment of H. Repeating Steps 1-5 produces arbitrarily many
elements of H.

Keeping it honest

The previous sections have swept many important details
under the rug, and readers interested in a more precise
treatment may consult e.g. [RP11, Chapter 8] or [NC11,
Chapter 5.3]. Most importantly, implementing the blue-
print above in the case of RSA requires the knowledge of
a finite quotient Z/LZ s.t. the map fr» : € —> z€ :
Z — 7 /nZis well-defined on Z/LZ, but it can be seen
that this is as hard as the original problem. Instead, one
chooses a sufficiently large L and observes that, albeit
no longer exact, the blueprint still allows us to extract the
desired periodicity with sufficiently high probability.

Appendix B: An
introduction to
lattice-based

cryptography

In this appendix, we give a brief introduction to some
ideas behind lattice-based cryptography. We begin with
a gentle and hopefully intuitive journey from the classi-
cal Caesar and Vigeneére ciphers to the main idea behind
symmetric encryption based on the fundamental learn-
ing with errors (LWE) problem. We will then explain that
this scheme is a homomorphic encryption scheme and
how this property allows to construct a public key encryp-
tion scheme from it. In the final, slightly more technical
sections, we explain the relation between LWE and classi-
cal lattice problems, which is a main source of confidence
in the hardness of LWE, and hence the security of lattice
based cryptography.

In addition to modular arithmetic in Z/nZ already
used Appendix A: How quantum computers threaten RSA
& ECC, we assume that the reader is familiar with basic
notions from linear algebra such as vectors, matrices, and
scalar products. RLWE will be explained at an intuitive
level only, and beyond the notion a polynomial ring, no
knowledge of number theory is necessary.


https://en.wikipedia.org/wiki/Tide-predicting_machine

From the Caesar cipher to weak pseudo-
random functions

Caesar and Vigenere

The reader will undoubtedly have come across the fa-
mous Caesar cipher: a plaintext is encrypted by shifting
each letter a fixed number of positions. For example,

pqcisreal
J shiftby 6

vwioyxkgr

Of course, this is easily reversed. A slightly better ap-
proach is the Vigenére cipher, which uses different yet
repeating shifts depending on which letter is being en-
crypted and encodes those shifts in a passphrase: For
example, the passphrase pqcisreal corresponds to the
repeated shift sequence 15,1s6,2,8,18,17,4,0,11, giving

shorsalgorithmbreaksrsaonaquantumcomputer
i.pqcisreal

hxqzkrpgzgyvpesvelzitasfrabjgpbmdgoxekvmj

This is better than the Caesar cipher, but there are many
problems remaining:

¢ Knowing any pair of corresponding plaintext and ci-
phertext reveals the passphrase and allows an attacker
to decrypt any other message protected by the same
passphrase.

¢ The repetitive nature of the shifts allows us to recover
the plaintext by analyzing letter frequencies.

¢ Humanreadable passphrases are prone to brute force
attack.

Alice goes to the library

All of the above problems with the Vigenere cipher could
be fixed by choosing fresh and truly random passphrases
with every encryption and by splitting the plaintext into
chunks as large as the passphrase. Those changes, how-
ever, would render the scheme impractical because all
those passphrases would need to be pre-agreed.

An alternative is to stick with one passphrase per en-
cryption, but to dynamically derive those passphrases from
a public hint and some shared secret: for example, each
passphrase could be the first word on a random page in
a secret book both sides have agreed upon upfront, the
hint to which would be the page number. Or, to avoid
brute forcing the passphrase, as well as to harden the re-
covery of the book from the knowledge of which words
appear on which pages, one could form the passphrases
from the first letters of the words on the chosen page.
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Symmetric encryption from weak PRFs

While the above sounds — and, taken literally, is indeed
— very naive, it is at heart a sound procedure:

A key k defines a secret function F}, and encryption
enck(m) := (h,m + Fy(h)) consists in choosing a ran-
dom hint A and masking the message m with the fresh
‘passphrase’ Fj(h). In our example, k is the secret book,
h is a page number, Fj(h) is the lookup of the initial let-
ters on page h in book k, and + is Caesar shifting. De-
cryption is simply given by dec(h, ¢) := ¢ — Fi(h).

Intuitively, this procedure is safe if the mask Fj(h)
appears random, assuming the hints h are chosen ran-
domly. And indeed, the above is an informal description
of a well-known construction of a symmetric encryption
scheme from a weak pseudo-random function.®

Definition. A weak pseudo-random function (weak PRF)
is a family of functions { Fy } ,exc indexed by a key-space
K such that an attacker cannot distinguish the stream

hi, Fx(h1), ha, Fy(h2),..., k,h; randomly chosen

from truly random data.

Weak PRFs and Block Ciphers

Weak PRFs are called ‘'weak’ since they are a relaxed vari-
ant of the definition of a pseudo-random function (PRF),
where an attacker can choose the arguments h; to query
F}, on freely and adaptively, and on the basis of which
they should decide whether they are querying one of the
F}., or rather a random function.

The most popular examples of PRFs are block ciphers,
which are PRFs where all F, are efficiently invertible. The
most popular example of a block cipher in turn is the Ad-
vanced Encryption Standard AES.

Practically relevant block ciphers often have an ad-
hoc construction and heuristic, informal arguments of se-
curity. Block ciphers with formal proofs (or rather, reduc-
tions) of security do exist, but are not usually of practical
significance. As we shall see, lattice-based cryptography
opens the door to constructions of (weak) PRFs and their
associated cryptographic schemes which are both prov-
ably secure and of acceptable performance.

The LWE problem
Weak PRFs from Linear Algebra?

At the heart of lattice-based cryptography is the following
extremely simple function family from linear algebra:

Definition. The function family { Fs} is indexed by vectors
s of a fixed length, and defined by

Fy(t) := st! = Zsiti,

i

The momentarily considered approach of choosing for every en-
cryption a truly random passphrase of the same size as the message
to be encrypted, is nothing but the famous one-time pad.



where t is another vector of the same length as s.

This family {Fy} is not a weak PRF, since each Fj is
linear while a randomly chosen function likely is not, so
an attacker can easily distinguish F}, from a random func-
tion by performing a linearity check.

Somewhat surprisingly, adding noise/errors converts
{Fy} into what does seem to be a weak PRF:

Definition (Informal). Let s be a secret vector, and
Fy(t):=st' +¢, &smallfresh random error term.

The learning with errors problem (LWE) [Req09] asks us
to distinguish

tl,Fs(tl),tQ,Fs(tg),..., S,ti random
from truly random data.

More precisely, the LWE problem LWE, ,, is stated for
vectors over Z/qZ for some ¢, and the noise ¢ is chosen
from a discrete Gaussian distribution with standard devi-
ation ag and mean 0. We refer to [Reg09] for the details,
which are not relevant for our purpose.

Example: The simplest example of the LWE problem is
the case where ¢ = 2, where s, t are bitvectors and

F(t) = (51 AND #1) XOR ... XOR (s,, AND ¢,,) XOR €.
This is called the Learning Parity with Noise problem.

The reader is invited to pause and reflect on the re-
markable simplicity of the above candidate weak PRF, be-
ing just’ randomized linear algebra over Z/qZ.

Symmetric Encryption from LWE: A first try

We leave the question of hardness of LWE aside for now
and consider how to instantiate the construction of a sym-
metric encryption scheme from a weak PRF using LWE.
For concreteness, we consider ¢ = 26 and identify
7)267 = {a,b,c,...,x,y,z} as in the Caesar and Vi-
genere ciphers — with respect to this identification, Cae-
sar shifting is just addition modulo 26. The secret key s

as well as the "hint’ ¢ are fixed-size vectors of letters, say
[p?q?cﬂi7s7r7e7a7l] |:j 7u7s7t7a7h7i7n7t]

S = é , t = é .

[15,16,2,8,18,17,4,0,11] [9,20,18,19,0,7,8,13,19]

To encrypt a letter ¢, we pick a small random noise term
¢ biased towards a £ 0, and compute

encs({)
=5t +e+{

[p’q7c7i7s7r?67a’l}
A

[jus,t,2h,i0,t] "
= 2 . 2 +e+4
[15,16,2,8,18,17,4,0,11] [9,20,18,19,0,7,8,13,19] T

1003
= 2 4e+l=p+e+/l.
p
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But now a problem becomes apparent which the atten-

tive reader will likely have spotted much earlier: our mask-
generating function F} is not deterministic'”, and depend-
ing on our choice of e — for example, we could picke = a

or € = b — the result of the encryption will be different.

Concretely, the decryption routine evaluates F(t) itself

and might pick a different noise €, leading to

decs(encs(€)) = £+ (e — €').

This term equals £ in average, but may slightly deviate
from it each time.

To summarize: on the one hand, the addition of noise
is essential to make LWE hard. On the other hand, it pre-
vents instantiation of the transformation of weak PRFs
into symmetric ciphers as-is. We will study ways around
this problem in the next section.

How to handle the noise?

There are multiple ways to handle non-determinism in
the mask-generating function F.

Method 1: Error correcting codes per letter

Recall that encrypting and decrypting leads to
decs(encs(£)) = £+ (e — &),

so we only recover the letter £ approximately, up to a
small left/right shift. However, if we do not allow any let-
ter £ as the plaintext, but restrict to a subset of letters at
sufficient distance, we are able to remove the noise e — &’
after decryption.

For example, if we only allow the noise € to be a £ 0
orb £ 1, then decs(encs(¢)) differs from ¢ by at most
one shift to the left or right, and restricting £ to the let-
ters a,d, g, j,m, p, s, v allows to remove the decryption
noise: we would e.g. ‘round down’ ntom, or ‘round up’u
tov. Of course, with growing noise we need to widen the
distances between letters, too, but the idea of essentially
applying an error correcting code in the plaintext alpha-
bet stays the same. For example, if we would allow the
noise ¢ to shift up to 6 letters we would need to restrict
the plaintext letters to just £ € {a,n} to be able to re-
move the noise.

This idea appears in [GGH97] (based on [AD97]) and
in [Reg04], and is used in the first LWE-based encryption
scheme by Regev [Reg09]. It also underlies the NIST PQC
Round 3 Finalist CRYSTALS-Kyber: the ciphertext alphabet
is a large Z/qZ, while the plaintext alphabet is reduced
to just {0, 2} C Z/qZ, allowing for a large noise term &
which in turn hardens the underlying LWE problem. That
is, the plaintext is broken down into bits, and each indi-
vidual bit is represented as either 0 or % and encrypted
under the LWE procedure.

¥This is called a randomized weak PRF in the literature [App+09].



Note that the width of the noise is a tradeoff between
efficiency and security: the larger the noise, the harder
(at least intuitively) the LWE problem. However, at the
same time a large noise requires a larger gap between
the allowed plaintext letters, and hence implies a larger
plaintext to ciphertext expansion factor.

Method 2: Leave gaps in the noise

The previous approach uses small noise terms and spreads
out plaintext letters. Dually, we can use small plaintext
letters and spread out the noise terms instead: For exam-
ple, we could choose the noise e from {a,d, g, j,m, p, s, v}
and the plaintext letter ¢ from {a, b, c}.

This approach is popular in the context of fully homo-
morphic encryption [Gen09; BV11; BGV11].

Method 3: Error correcting codes per word

Error correction at the level of individual letters requires
a sufficiently large alphabet Z/qZ. In particular, it does
not work in the Learning Parity with Noise case ¢ = 2. In-
stead, one can apply error correction at the level of words
by approximately decrypting a sequence of letters and
then using an error correcting code at the level of such
words. This idea was implemented in [GRS08].

Method 4: Remove the noise - Learning with Rounding

One way to look at adding small amount of noise to a

mask is that it hides low bits, and the same could be achieved

by removing those low-bits instead of randomizing them.
Thisis the idea of the Learning with Rounding (LWR) prob-
lem [BPR11], which replaces the randomized weak PRF
Fy(t) := stT 4 e by Fi(t) := L%}, where r measures
how many low-bits should be omitted from st .

This approach is natural and brings us back to the
world of deterministic weak PRFs. It is at the heart of the
NIST PQC Round 3 Finalist SABER.

Public Key Encryption from LWE

So far, we have only considered symmetric encryption
schemes based on the LWE problem, but — as detailed in
The impact on symmetric cryptography — it is public key
cryptography that is threatened by quantum computers.
In this section we outline how LWE can be used as the
basis for a public key encryption scheme.

Homomorphic Encryption

The LWE-based symmetric encryption scheme has some
remarkable properties:

Observation. For encryptions of plaintexts £1 and ¢,

c1 = encs(f1) = (t1,st{ +e1+61)
Cy = encs(ﬁg) = (tz, St; + &9+ 62),
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the sum of the two ciphertexts
c1+cy = (tl + to, S(tl + tz)T +e1+e9+ (fl + Eg)),

is a valid encryption of the sum {1 + {5 of the two plain-
texts — at least if the noise £1 + €9 is not too large.

This extends to arbitrary sums and, more generally,
linear combinations of more than two ciphertexts, as long
as the coefficients of those combinations are small enough
to keep the noise value within its bounds — we do not
go into details. Considering encryptions of 0 as a special
case, we in particular obtain:

Observation. Smalllinear combinations of encryptions of
0 are again encryptions of 0.

We will also need the following:

Observation. (0,¢) is a valid LWE-encryption of ¢, ob-
tained by choosing 0 for both the hint t and the noise €.

Encryption which supports computations on encryp-
ted data which have a controlled effect on the underlying
plaintexts is called homomorphic encryption. If arbitrary
plaintext computations can be performed on the corre-
sponding ciphertexts, the scheme is called fully homo-
morphic. The above observation can therefore be phrased
as saying that LWE-based encryption is naturally “addi-
tively homomorphic” — and in fact, one can even con-
struct fully homomorphic encryption based on LWE.

Depending on how one looks at it, homomorphic en-
cryption is either a defect or a feature: it is a defect in
the sense that it makes the scheme malleable — if you
do online banking, you would not want an attacker to be
able to fiddle with the encrypted transfer request to turn
a $1,000 into a $1,000,000. On the other hand, it is a
feature in the sense that it allows one to offload compu-
tation to untrusted third parties.

Fully homomorphic encryption is a fascinating field,
but out of scope of this paper, so we will not go further
into it here. Suffice to say that apart from the dominance
of (structured) lattice-based cryptography in the Round 3
Finalist Track of the NIST PQC project, its use for fully ho-
momorphic encryption is yet another reason why lattice-
based cryptography is here to stay.

Encryptions of 0 as public keys

In the last section we have seen that:

e For any plaintext letter ¢, the sum of (0, ) and an ar-
bitrary encryption of 0 is an encryption of £.

e ‘Small’ linear combinations of encryptions of 0 are
again encryptions of 0.

This leads to the following idea of turning LWE into a
public key cryptosystem:



* Asa public key, publish a set {¢;} of encryptions of 0.

e To encrypt £, form a fresh encryption of 0 via a ran-
dom ’small’ linear combination cfesn Of the ¢;. The
encryption of £is (0, €) + Ctresh-

* Decryption is unchanged: given (¢,c), the receiver
computes the mask F,(t) = st' + ¢ and removes
the noise from ¢ — F(t) to recover the plaintext (the
noise € can in fact be chosen to be 0 here).

Note that decryption does not involve the public key,
nor does it require recovery of the coefficients used to
combine the ¢;. Indeed, as we shall see below, the latter
is a hard problem.

Some notation

At this point it’s useful to introduce some common nota-
tion, simplifying subsequent discussions and helping the
reader interested in further literature study.

Each encryption ¢; of 0 is of the form (#;, st +¢), so
the public key {¢;} can be expressed in matrix form as

pk = (A,b:=sA+¢),

where A = [t; ... t,]" ande = [¢1 ..
cryption of a letter £ is then given by

enciap(l) = (AXT,bAT +0),

. €m]. The en-

for a’small’ random ), and decryption is given by
decs(h,¢) = decode(c— sh'),

where decode removes the noise as one of the ways dis-
cussed in How to handle the noise?.

This is the way LWE-based cryptosystems are usually
presented in the literature.

As a sanity check, let us ask: can an attacker learn
anything about s from the public key {(t;, st + &;)}?
No, since the very LWE assumption says that the latter is
indistinguishable from truly random data.

The Short Integer Solution problem

The reader might wonder: given a public key (A, b) and
an encryption (AXT,bAT + £) of some letter £, can’t we
recover A from AXT by linear algebra, and thereby de-
duce also the mask bAT and finally £?

The hidden complexity here is that while linear alge-
bra allows us to find some vector ps.t. Au' = AXT, we
need a small one: assuming only Au” = A\T, the real
mask bAT and the candidate mask by " differ by

AT —bpT = sANT +eXT —sAp” —ep’
=e(p— )‘)T7
which is only within the allowed (and removable) range
of noise provided that u is a small vector.
LWE-based public key encryption — in fact, the LWE

problem itself — therefore rests on the following prob-
lem:
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Problem. Given a random matrix A € (Z/qZ)™*™ with
m > n, the Short Integer Solution (SIS) [Ajt96] problem
asks us to find ‘small’ vectors t € (Z/qZ)™ s.t. At = 0.

Note that finding a small t with At" = 0 is the same
as finding collisions for the map

(t € (Z/qz)™ small} =AY (z)qz). (%)

Not only is this a remarkably simple candidate for a
collision-resistant function family, but note also that it is
‘almost’ additively homomorphic — thatis, At} +At{ =
A(to 4 t1) T — with the caveat that the addition of ele-
ments of the left hand side of (x) is only a partially de-
fined operation due to the smallness constraint.

This ‘almost homomorphic’ one-way function turns
out to be a powerful replacement for the classical ho-
momorphic one-way function e — ¢° defining the Dis-
crete Logarithm Problem: For example, the “Fiat-Shamir
with Abort” [Lyu09] approach to lattice signature sche-
mes used in the Round 3 Finalist CRYSTALS-Dilithium es-
sentially arises from the classical Schnorr signature scheme
by replacing e — g€ with t — At .

Hardness of LWE and lattices

We have not touched on two obvious questions:
¢ \What evidence do we have that LWE/SIS are hard?

e Why isthis appendix called “An introduction to lattice-
based cryptography” — where are the lattices?

Lattices and lattice problems

An n-dimensional /attice is a discrete subgroup A of R™
which spans it. Equivalently, it is the set of Z-linear com-
binations of a basis {b1, ..., b, } of R™. Figure 15 shows
an example of a two-dimensional lattice together with
one possible choice of basis. Two things can already be
observed in that picture:

Observation. The lattice generated by a basis can contain
vectors that are shorter than the basis: in the figure, the
shortest vector 3by — 2by is shorter than both by and bs.

Observation. The lattice point closest to a vector given as
an R-linear combination of a lattice basis is not linked to
the basis coefficients in an obvious way: in the figure, the
lattice point closest to v ~ %bl is 2b1 — bo.

Those observations are at the heart of the following
two central algorithmic problems about lattices:

Problem. Given A, the shortest vector problem (SVP) asks
us to find the shortest non-zero vector in A.

Problem. Given A, the closest vector problem (CVP) asks
us to find the lattice point closest to a given vector.



o]

[¢]

Figure 15: A 2-dimensional lattice generated by {b1, b2 }.

Both problems are usually formulated as a continu-
ous spectrum of decision problems indexed by an approx-
imation factor: for Gap-SVP,, we are given (A, d) and
need to decide if the length of the shortest vectorin A is
smaller than d or larger than ~d; the problem Gap-CVP,,
is defined similarly.

Gap-SVP, and Gap-CVP,, get easier with larger ap-
proximation factor . In the extreme cases, the LLL al-
gorithm (a lattice reduction technique) solves Gap-SVP,
in polynomial time, for an approximation factor « which
is exponential in the lattice-dimension n, e.g. v = 2™. At
the other end of the spectrum, it is known that Gap-SVP,
is NP-hard for any constant «. The middle ground of a
which is polynomial in n is what many LWE-based cryp-
tosystems relate to.

See [ARO5] for a graph illustrating the hardness of lat-
tice problems as the approximation factor varies.

From LWE to lattices

The fundamental result about the hardness of LWE is the
following relation to Gap-SVP,,. Recall that LWEy 4 asks
us to distinguish samples st + & from random, where
s € (Z/qZ)™ is secret and fixed, t € (Z/qZ)™ is uni-
formly random, and the noise ¢ € Z/qZ is chosen from
a discrete Gaussian distribution of standard deviation aq.

Theorem 1 (Informal). There is an efficient quantum re-
duction from Gap—SVP@(n/a) to LWE o, provided o and

q aren’t too small: ag > 2+/n.

For example, if ¢ = n? and & = 1/n, we see that
an efficient quantum algorithm LWE, 2 ; ,, yields an ef-
ficient quantum algorithm for Gap—SVP@(ng) with poly-
nomial approximation factor, and no such algorithm is
known. Note how an increased width « of the noise in
LWE leads to a better approximation factor in Gap-SVP.

Main idea

At the heart of the reduction is a quite intuitive idea to
use LWE to solve instances of the closest vector problem:
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Suppose A C R™ is a lattice with basis {b1,...,b,},
and v € R" is a vector close to the lattice point s1b1 +
oot Spbn, si € Z. We wanttofind s = [s1 ... sp).

To reduce the problem to LWE, we use the following
“measurement approach”: we pick an arbitrary “coordi-
nate function” ¢ : R™ — R and consider ¢(v). Since
v =~ ), s;b;, we should also have

p(v) ~ Zsz‘@(bz‘) =s-[p(b) ... oa)]". (%)

Doesn’t this look like a sample from the mask-generating
function Fi(t) := st' + e underlying LWE? If we gen-
erate a large number of those samples and invoke the
assumed LWE-solver, we should be able to find s. Ul-
timately, this idea turns out to be fruitful, but to make
it work, numerous technical obstacles have to be over-
come. For the benefit of the reader interested in diving
into the details, we briefly sketch those obstacles.

Firstly, LWE lives over Z/qZ for some g, and in par-
ticular, we need ¢(b;) € Z. Thesetof ¢ : R® — R
satisfying ¢ (b;) € Z — or, equivalently, ¢(A) C Z — is
called the dual lattice of A, and denoted A*. Moreover,
for an arbitrary v € R™, we have ¢(v) € R, and we need
to discretize it to a value in Z.

Secondly, how do we choose ¢ from the dual lattice
A*? There are opposing constraints: on the one hand,
we need [p(b1) ... p(by)] € (Z/qZ)" to be uniformly
random modulo g, which suggests choosing ¢ from a suf-
ficiently wide distribution on A*. On the other hand, the
longer ¢, the larger the error in (x), and hence ¢ should
be kept small. The solution turns out to be to choose
o from a suitable Gaussian distribution on A*. The con-
struction of such samples is a difficult problem in itself,
and two approaches are described in [Reg10, Proposition
2.1]. We do not go into further details here.

Thirdly and finally, there’s a correlation between ¢
and the noise in (x), while LWE requires hint and noise
generation to be independent. This needs to be fixed by
’smoothing’ the noise by adding Gaussian noise to ¢(v).

Working out the details here is rather technical, but
we hope that we could convince the reader that the un-
derlying idea behind the reduction is quite natural.

Efficiency considerations

The inefficiency of plain LWE

Let us get a rough estimate of the efficiency of the above
LWE-based public key cryptosystem, assuming hint and
secret vectors of length n. The expansion from plaintext
to ciphertext is determined by three factors:

* The mask generation hint, a vector in (Z/qZ)".
e The mask itself, an element of Z/qZ.

¢ The size X of the plaintext alphabet.
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This gives an expansion factor of &~ (n+1) logs(q)/ logy(2).

The secret key has size & n logs(q) bits.

Example: Let us consider the parameters used by
FrodoKEM, a NIST PQC Round 3 Alternate Track can-
didate, and moreover the only candidate remaining
whose security is based on unstructured lattices. We
will see that the result would be of limited practical
use, and indeed FrodoKEM applies some modifications
to the LWE-encryption blueprint to improve efficiency,
which we will discuss afterwards.

FrodoKEM provides three choices for (X, q,n),
namely (4, 2%, 640), (8,26,976), and (16,216, 1344).
If those parameters were used for plain LWE encryption,
the ciphertext overhead would be = 650 bytes per bit,
leading e.g. to ciphertexts of & 83kB for the encryption
of a randomly chosen 128-bit secret — too much for
general purpose use. In contrast, the secret keys have a
smaller size, from ~ 1.2kB for the first parameter set to
~ 2.6kB for the third parameter set.

One idea to improve efficiency of plain LWE is to bal-
ance the sizes of secret key and cipher text: for key gener-
ation, we generate multiple independent secret key vec-
tors s1,..., Sm, and during encryption, a single hint h is
used to generate masks F, (h), ..., Fs, (h)forall of the
s;. This reduces the plaintext to ciphertext expansion by
the factor m, but increases the secret key length by the
same amount. This approachise.g. applied in FrodoKEM
with m = 8§, leading to ciphertext lengths between 10kB
and 20kB and secret keys between = 10kB and =~ 21kB
(excluding the public key).

Ring Learning With Errors

One major reason for the large key sizes in plain LWE is
the fact that generating a single scalar mask in Z/qZ re-
quires the choice and transmission of a mask generating
hint vector, since mask generation involves the scalar prod-
uct Fy(t) = st! + e. At the same time, the only struc-
tural property of the scalar product that we actually used
in the construction of LWE-based encryption was its bi-
linearity: any mask generation of the form Fy(t) = s e
t+¢ with bilinear e would yield a candidate cryptosystem
(though the question of security will very much depend
on the specific choice of e).

Those considerations motivated the study of the Ring
Learning With Errors (RLWE) problem, in which the (di-
mension reducing) scalar product in the mask genera-
tion function of LWE is replaced by a (dimension preserv-
ing) multiplication (more precisely, a ring structure) on
(Z/qZ)™. As a result, the mask itself is an n-dimensional
vector which can be used to mask n plaintext letters, and
so the plaintext to ciphertext expansion factor drops from

(n+1)logy(g)/X to 2logy(q) /.
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Example: Let us consider the parameters used by the
RLWE-based scheme NewHope, a popular NIST PQC
Round 2 candidate. It uses ¢ = 12289 and encrypts the
plaintext bit-wise (X = 1), which would give an expan-
sion factor of 28 and e.g. a 28-32 = 896 byte ciphertext
for a 256-bit plaintext, if the RLWE blueprint was used
unmodified. The actual numbers for NewHope differ
slightly since the each plaintext bit is masked two (for
NewHope-512) or four (for NewHope-1024) times, and
NewHope applies some ciphertext compression, giving
ciphertext sizes of 1088B and 2176B.

Choice of rings

RLWE is often used over polynomial rings Z[X]/(P (X)),
where P(X) is an irreducible polynomial. The choice of
the 28*1-th cyclotomic polynomial P(X) = x?" 41
is particularly popular and used in the NIST PQC Round 3
Finalists CRYSTALS-Kyber, CRYSTALS-Dilithium and SABER.
More generally, RLWE is studied for rings of integers in
number fields.

The choice of Z[X]/(X™ + 1) with n a power of 2 is
attractive for performance: for a prime g with 2n|¢—1 (as
is the case for CRYSTALS-Kyber and CRYSTALS-Dilithium,
but not for SABER), the Number Theoretic Transform al-
lows us to represent elements (Z/qZ)[X]/(X™+1) ina
way that multiplication has complexity which is linear in
n, as opposed to the quadratic complexity of naive poly-
nomial multiplication.

Security of RLWE

The reduction of SVP to LWE carries over to RLWE. How-
ever, in contrast to LWE, it does not target SVP for general
lattices, but only lattices which are contained within the
chosen ring — so-called ideal lattices, examples of the
“structured” lattices giving the field its name?%?!.

The reduction of Ideal-SVP to RLWE gives a less satis-
factory lower bound on the hardness of RLWE than the
one we obtain for LWE: generally, since SVP for struc-
tured lattices is less studied than for general lattices, and
specifically, since recently [CDW16] a polynomial quan-
tum algorithm was found for Ideal-SVP,;( /my. No such
algorithm is known for general lattices, so there is — at
least in asymptotical terms — a gap between the hard-
ness of lattice problems for unstructured and structures
lattices that was not expected at first.

Further variants of (R)LWE

Numerous other choices of bilinear maps e for the mask
generation have been studied: For example, as an “in-
terpolation” between LWE (using vectors with scalar en-

The term “structured” lattice can also refer to lattices obtained
from other algebraic variants of LWE, see Further variants of (R)LWE.

“The “measurement approach” from Main idea goes through for
RLWE in an analogous fashion, provided it is formulated in the right
generality — see [LPR13].



tries) and RLWE (using ring elements) one can consider
Module-LWE (MLWE), where the mask generating hints
are vectors with ring entries. We recommend [PP19] for
a survey and general treatment of those approaches.

Concrete security of (R)LWE

While the reductions from (Ideal-)SVP to (R)LWE give con-
fidence in the asymptotic complexity of (R)LWE, they do
not provide concrete security guarantees for specific cryp-
tosystems and parameter choices. While those could be
obtained by estimating the complexity of the reduction
itself as well as the complexity of (Ideal-)SVP, the concrete
security for lattice cryptosystems is usually directly esti-
mated in terms of concrete cryptanalysis using known lat-
tice algorithms. The interested reader can find more in-
formation on the Estimate all the {LWE,NTRU} schemes!.

Copyright ©2020 Arm Limited (or its affiliates). All rights reserved.
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