
Thermal and Energy Efficiency of Heterogeneous Mobile
SoCs: Current and Upcoming Trends/Challenges

Introduction

➢Modern mobile SoCs are containing greater

number of heterogeneous cores to support

highly diverse and varying workloads

➢To meet performance, energy consumption and

thermal efficiency requirements, the process of

thread-to-core mapping and setting DVFS levels

can be exploited

➢The process becomes complex with increasing

concurrent applications and heterogeneity

A Heterogeneous Mobile SoC

Amit Kumar Singh1, Karunakar Reddy Basireddy2, Geoff V. Merrett3, Bashir M. Al-Hashimi3

1University of Essex, UK, 2ARM, Bangalore, India, 3University of Southampton, UK

State-of-the-art: Shortcomings

Adaptation for Thermal and Energy Efficiency

➢Adapting DVFS with reliance on profiled data

➢Predictive Thermal Management for Energy-Efficient

Execution of Concurrent Applications on

Heterogeneous Multicores, in IEEE TVLSI 2019

➢EdgeCoolingMode: An Agent Based Thermal

Management Mechanism for DVFS Enabled

Heterogeneous MPSoCs, in IEEE VLSID 2019

➢Teem: Online thermal-and energy-efficiency

management on cpu-gpu mpsocs, in IEEE DATE 2019

➢Adapting DVFS without reliance on profiled data

➢User Interaction Aware Reinforcement Learning for

Power and Thermal Efficiency of CPU-GPU Mobile

MPSoCs, in IEEE DATE 2020

➢Adapting Mapping and DVFS with reliance on

profiled data

➢Collaborative adaptation for energy-efficient

heterogeneous mobile SoCs, in IEEE TC 2019

➢Adaptation happens at application arrival and

departure

➢It can be extended to consider a thermal threshold

➢Adapting Mapping and DVFS without reliance on

profiled data

➢AdaMD: Adaptive mapping and DVFS for energy-

efficient heterogeneous multi-cores, in IEEE TCAD

2019

➢Adapts to runtime execution scenarios efficiently

by monitoring the application status, and

performance/workload variations.

➢It can be extended to consider a thermal threshold

Upcoming Trends & Conclusions

➢Hierarchical Management for Multi-cluster SoCs

➢Increasing Application Domains

➢Multi-objective Optimizations

➢Secure and Efficient Interaction with Cloud

➢Adaptation for thermal and energy efficiency

➢Dynamic Energy and Thermal Management of Multi-Core

Mobile Platforms: A Survey, in IEEE D & T, 2020.

ARM

Mali-T628

GPU

128KB

L2-Cache

128-Bit AMBA ACE BUS interface

2GB DRAM

Cortex-A15 cluster

2MB L2-Cache

Core0 Core1

Core2 Core3

Cortex-A7 cluster

512KB L2-Cache

Core0 Core1

Core2 Core3

Samsung Exynos 5422 SoC

Exynos 5422

under fan

Mapping and DVFS Process

Experiments

Odroid XU4 board

➢Mostly use heavy application-dependent profile

data -> not efficient in managing dynamic

workloads with unknown applications

➢Do not perform adaptations (changing the

mappings and/or DVFS settings) at an

application arrival/completion, and performance

variations.

A
p

p
l.

...

H
/W H/W

Resource 1
H/W

Resource 2
H/W

Resource n
...V/F

Levers

O
S/

R
TM

Energy/Perf Statistics
(e.g. counters)

H/W Resource selection
and V/F control

Workload Estimation
Model

 Temperature Estimation
Model

Run-Time Manager (RTM)
(e.g. Energy and Temperature)

Current
Temperature

➢On Odroid XU3/XU4, Galaxy Note 9, Huawei

P20 Lite

➢Currently considering Google Pixel 3

➢Sample results:

0

200

400

600

800

2
D

C
V

G
M

2
M

M
V

S
2

S
R

C
R

E
n
e
rg

y
 (

J)

EEMP RMP TEEM

0

20

40

60

80

100

2
D

C
V

C
R

G
E

2
M

M
V

S
2

S
RT

e
m

p
e
ra

tu
re

 (
o
C
)

0

0.5

1

1.5

2

2.5

0

100

200

300

400

1 2 4 8 16 32 64 128 256 DR
AM

 B
W

 R
eq

ui
re

m
en

t
(K

By
te

s/
Cy

cle
)

Ru
nt

im
e

(K
 C

yc
le

s)

Num Partitions HBM BW
1 KB/cycle

DDR BW
100 B/cycle

! = (2R + C + T - 2) x ⌈ S’R / R ⌉ x ⌈ S’C / C ⌉

A Systematic Methodology for Characterizing Scalability of DNN
Accelerators using SCALE-Sim

Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, Paul Whatmough, Matthew Mattina, Tushar Krishna
anandsamajdar@gatech.edu

Motivation Target Systems

Analytical model

Results

Sizes of state-of-the art networks
Number of applications using DNNs

Tolerance on latency
Energy efficiency
Benefits from device scaling

Need more
powerful

accelerators

Two approaches for scaling
1. Scale-Up: Make big chips 2. Scale-Out: Make big collection of chips

TPU v1 Cerebras WSP TPU v3 Nvidia Simba

But which design approach is more
beneficial?

…

…

…

…

…

…

…

…

… … … … … … … …

Output SRAM buffer

SRAM
buffer

SRAM buffer

R

C

Off-chip
BW

Monolithic Array: Scale-Up

…
…………

…

…

…

R’

C’

SRAM buffer

SRAM
buffer

Output
SRAM buffer

…

…………

…

…

…

R’

C’

SRAM buffer

SRAM
buffer

Output
SRAM buffer

…

…………

…

…

…

R’

C’

SRAM buffer

SRAM
buffer

Output
SRAM buffer

…

…………

…

…

…

R’

C’

SRAM buffer

SRAM
buffer

Output
SRAM buffer

…

…………

…

…

…

R’

C’

SRAM buffer

SRAM
buffer

Output
SRAM buffer

…

…………

…

…

…

R’

C’

SRAM buffer

SRAM
buffer

Output
SRAM buffer

…

…

Off
chip

Off-chip
BW

Distributed Arrays: Scale-Out

Both configurations have equal
— Number of MAC units
— Total size of SRAM buffers

Which configuration has:
a. Better Runtime?
b. Higher Efficiency?
c. Lower off-chip bandwidth
demand?

Systematic analysis using
analytical model and

SCALE-Sim*

* https://github.com/ARM-software/SCALE-Sim

Monolithic Array: Scale-Up

Filter

IFMAP
R

T

SR

R

C

C
T

SC

OFMAP
{ceil[SR / R]

{ceil[SC / C]

SR

SC

SR : Spatial mapping dimension along rows

SC : Spatial mapping dimension along cols

Mapping for OS dataflow

T : Temporal mapping dimension

Spatial (SR) Spatial (SC) Temporal (T)

OS OFMAP Px per channel Num Filter Elem per Conv Window

WS

IS

Elem per Conv Window

Elem per Conv Window

Num Filter

OFMAP Px
per channel

Num Filter

OFMAP Px per channel

Fold: Number of serial steps

Runtime, ! = Runtime for one-fold
 x Number of folds

Number of folds = Folds in row dimension
 x Folds in col dimension

= (2R + C + T - 2)Runtime one-fold
= ⌈ SR / R ⌉ x ⌈ SC / C ⌉

! = (2R + C + T - 2) x ⌈ SR / R ⌉ x ⌈ SC / C ⌉

R: Rows, C: Cols
Distributed Arrays: Scale-Out

Filter

IFMAP

SR

SC

T

T

SR’ SC’

R

C

{
PR

{PC

Distributed mapping for OS dataflow

 Accelerators arranged as a
PR x PC spatial grid

PR : Accelerators along Rows
PC : Accelerators along Cols

Each unit works on a part
of the problem

All units run in parallel

Number of folds per unit
= ⌈ SR’ / R ⌉ x ⌈ SC’ / C ⌉

SR’ = ⌈ SR / PR ⌉
SC’ = ⌈ SC / PC ⌉

Where,

Total Runtime = Runtime of one unit

0.1

1

10

100

Conv1 CB2a_1 CB2s IB5c_3 FC6

Re
la

tiv
e

Ru
nt

im
e

(S
ca

le
 U

P
: S

ca
le

 O
U

T)

Resnet50 Layers

256 1024 4096 16384 65536

0.1

1

10

100

GNMT0 GNMT3 DB0 TF0 NCF0

Re
la

tiv
e

Ru
nt

im
e

(S
ca

le
 U

P
: S

ca
le

 O
U

T)

Language model layers

256 1024 4096 16384 65536

Performance

Off - Chip Accesses

0

200

400

600

800

1000

1 2 4 8 16 32 64
128

256
512

1024
2048

En
er

gy
 (u

J)

Num Partitions

262144 MAC

65536 MAC

16384 MAC

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

En
er

gy
 (m

J)

Num Partitions

4096 MAC

1024 MAC

256 MAC

Energy Efficiency

! = (2R + C + T -2) x ⌈ SR’ / R ⌉ * ⌈ SC’ / C ⌉
Runtime per fold Number of folds

Performance improves with more partitions

Both terms lower for
Scale-Out

Off-chip accesses increase due to loss of spatio-temporal reuse
Monolithic configurations are best with least off chip accesses

Most efficient configuration dependent on the interplay of reuse and
performance

Definite sweet spots exist

218 MAC units 214 MAC units

0
10
20
30
40
50
60

0

20
40

60

80
100

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48 DR

AM
 B

W
 R

eq
ui

re
m

en
t

(K
By

te
s/

Cy
cle

)

Ru
nt

im
e

(K
 C

yc
le

s)

Num Partitions
HBM BW
1 KB/cycle

Conclusions
Scaling DNN accelerators efficiently is non intuitive even for simple designs
like a systolic array

We propose an analytical model and simulation infrastructure to help make
scaling decisions

Our analysis depict that we can find out sweet spots for energy efficient and
performant configurations

Link to paper: https://bit.ly/3fSD8O0

Hardware and Compiler Support for Programmable Non-Volatile Memory

Apostolos Kokolis, Thomas Shull, Jian Huang and Josep Torrellas

Programming Non-Volatile Memory

 NVM offers an attractive combination of capacity,
persistence and performance

 Users have access to NVM at byte-granularity

 NVM success depends on easy to use frameworks

 Most frameworks put the burden on programmers

1 Persistency by Reachability: Programmable NVM

with AutoPersist(PLDI’19 http://iacoma.cs.uiuc.edu/iacoma-papers/pldi19_1.pdf)

 Minimize user involvement

 Users only mark entry points (durable roots) to
persistent data

 Rely on the compiler and runtime to dynamically
persist objects and ensure crash consistency

2

Operation of Persistency by Reachability

3 Hardware Support for NVM Programming with
P-INSPECT(MICRO’20 http://iacoma.cs.uiuc.edu/iacoma-papers/micro20_2.pdf)

 Replace runtime checks of object state with HW

 On an access to an object, HW checks if:

 Object is part of the NVM structures

 Object is in the process of moving to NVM

 Object is inside a transaction

 Added software managed Bloomfilters in HW to

check for membership of objects

4

Evaluation Highlights

6 Hardware Operations

 Bloomfilters are accessed as part of reads & writes

 We need instructions to check and operate on the
Bloomfilters

5

Problem: Hard to program applications
Problem: The runtime introduces overheads

to check the object state during execution

 Durable object (F) tries

to reference a DRAM

object

 Runtime identifies that

A is not durable

 Moves A to NVM

 Moves the transitive

closure of A to NVM

 DRAM objects A and B

act as forwarding

pointers to NVM

objects A & B

Ease NVM
programming

Simple HW

Performance

Special loads & stores Bloomfilter Operations

Check object state Insert elements and clear the BFs

http://iacoma.cs.uiuc.edu/iacoma-papers/pldi19_1.pdf
http://iacoma.cs.uiuc.edu/iacoma-papers/micro20_2.pdf

TornadoVM: Transparent Hardware Acceleration
of Managed Languages in the ARM Ecosystem

Florin Blanaru, Juan Fumero, Thanos Stratikopoulos,
Michail Papadimitriou, Maria Xekalaki, Christos Kotselidis

Performance

Mali G71 GPU vs Intel i7-8700K Mali G71 GPU vs Arm A73/A53 big.LITTLE

Relation to the Arm Ecosystem

Runtime JIT Compiler
TornadoVM
Extensions

compilation

Java methods

Java Virtual Machine

CPU

Arm, Intel, AMD

TornadoVM
Extensions

Xilinx, Intel

FPGAGPU 6
Arm, Intel,

Nvidia, AMD

üModular Architecture üVendor Independence üTransparent Acceleration

Programming Accelerators

C/C++ OpenCL CUDA

CPU FPGA

HLS

GPU 6

Compiled Languages

Java JS Ruby R

CPU

Virtual Machine

Python

Managed Languages

Cloud (e.g. AWS Graviton EC2)(e.g. Hikey960 SoC)

TornadoVM

IoT SoC Solutions

10.7 7.1

2.6

10
4.9

30
54

9.6

27

2.8

84
198

5.7

30

4.5

BlackScholes Dft Montecarlo Nbody Rendertrack
0.01

0.1

1

10

100

S
P

E
E

D
U

P
 V

S
 J

A
V

A
 S

IN
G

L
E

-T
H

R
E

A
D

E
D

Low Medium HighWorkload

8.3

1.4

0.4
0.85

0.03

27

134

0.9

8.7

1.7

30

187.8

1.75

9.9

3

BlackScholes Dft Montecarlo Nbody Rendertrack
0.01

0.1

1

10

100

S
P

E
E

D
U

P
 V

S
 J

A
V

A
 S

IN
G

L
E

-T
H

R
E

A
D

E
D

Low Medium HighWorkload

LIMELIGHT+: GRAPH THEORY AND SEMANTIC
LEARNING FOR DATACENTRE CALL GRAPHS

PENGFEI ZHENG,1 XIAODONG WANG,2 KIM HAZELWOOD,2 DAVID BROOKS,2 BENJAMIN C. LEE3

1 University of Wisconsin, 2 Facebook Research, 3 University of Pennsylvania

1 INTRODUCTION

Datacentres

• Optimize hardware, software, energy efficiency.

• Identify workloads’ optimization targets

Profiles

• Use stack traces to detail how software con-
sumes processor time

• Use call graph to detail how software composes

Objectives

• Reveal structure of massive software systems

• Identify hotspots for optimization

2 CHALLENGES

Discovering Optimization Targets

• Look beyond fine-grained hotspots
(e.g., memcmp, write)

• Discover coarse-grained computation
(e.g., key-value seeks)

• Discover synonymous computation
(e.g., malloc, calloc, mallocx)

Interpreting Call Graphs

• Analyze DAG for functions,
caller-callee relationships

• Scale analysis to O(10K) functions,
O(100K) relationships

Accounting for Time

• Eliminate abstract wrappers
(e.g., StartThreadWrapper)

• Avoid double counting time for function
and its sub-routines

4 PARTITIONING CALL GRAPHS

FDMAX layers the call graph by maximizing the foundational degree, which encodes desiderata.

• Functions in a layer compute at same scale

• Lower layers are foundations for higher layers

• Call graph is compacted to enhance interpretability

5 CLUSTERING SIMILAR FUNCTIONS

STEAM algorithm clusters semantically similar functions with machine learning.

• Use token co-occurence in function declarations to infer similarity

• Use token proximity in graph to infer similarity

• Discover synonymous functions to enhance interpretability

6 ATTRIBUTING COMPUTATION TIME

HELP algorithm maps information in original call graph into the transformed call graph with layers, clusters

• Exclusive Cycles: Cycles consumed by function when treated as leaf function.

• Inclusive Cycles: Cycles consumed by function and its sub-routines.

• Calculate group-, layer-level measures of cycles.

7 DATACENTRE INSIGHTS

Macro-scale Analysis

• Hottest 38 functions from 43 services account for only 60% of cycles

• Business critical services (ads, feeds, search); Microservices (machine learning, data stores, datacentre ops)

Micro-scale Analysis

• Hottest 37 clusters from O(10K) libraries account for only 50% of cycles

• No single dominant hotspot in software infrastructure

3 LIMELIGHT+ OVERVIEW

Analysis pipeline for datacentre call graphs

• FDMAX: Partition graph into coarser layers

• STEAM: Cluster semantically similar functions

• HELP: Identify hotspots for optimization

Case Studies

• Testbed. 400K stacks traces, 3.6K unique func-
tions from PyTorch Caffe2, RocksDB, HHVM

• Facebook. 300M stack traces, 240K unique func-
tions from production datacentre

• DARPA. Software assurance graphs from Auto-
mated Rapid Certification of Software (ARCOS)

Designing and prototyping a Brain-Computer Interface (BCI)

using embedded systems is mainly an integration process where

designers connect a set of custom Intellectual Properties (IP’s)

cores together using standard buses in order to build their custom

systems [1]. Such IPs are commonly modelling central aspects

of a BCI system such as Electroencephalography (EEG) signal

capturing, preprocessing, filtering, de-mixing, feature

extraction, classification and mapping

BCI System-On-Chips (SoC’s), hosts most of the necessary

computing components into a single chip. In previous works we have

presented an Arm-based multi-core heterogeneous SoC for

Brain Machine Interfaces focused around the Zynq 7000 SoC.

We have also presented several custom IPs hosted in the

Programmable Logic (PL) that facilitated the previous BMI aspects.

However, writing applications for such SoC’s must be dictated by the

BCI application needs while fast computation must be served in both

hardware and software level.

Exploiting Arm’s Assembly data burst
in Brain Machine Interface Applications

Gregory Kalogiannis (1); George Hassapis (1)
Organization(s): 1: Aristotle University of Thessaloniki, Department of Electrical and Computer Engineering, Greece

1: gkalogiannis@ece.auth.gr, 2: chasapis@eng.auth.gr

Introduction Our Study
The purpose of this study is to exploit on how to improve the

performance of BCI SoC applications in software level by using Arm

Assembly features such as the data transfer burst.

Therefore, we have chosen and accelerate the demanding

algorithm of Second Order Blind Identification (SOBI) commonly

used for signal separation in BCI systems that are dedicated in

recognizing human motor imagery movements [2].

In our BCI system, imagery motor movements are recognized as

mu and beta event-related desynchronization (ERD) and event-

related synchronization (ERS) patterns inside EEG recordings by

measuring power and energy signal features [3]. In order to do so,

mixed signals arrived from EEG recordings must be separated into

their original sources. SOBI algorithm is responsible for such

separation while it contains several matrix multiplications that

can be speeded up using assembly burst-block data transfer

commands.

Contact Author(s)

References
[1] Cortex-M-based SoC Design and Prototyping using Arm DesignStart. Ashkan Tousi,

Xabier Iturbe, Mirko Gagliardi, Grigorios Kalogiannis

https://developer.arm.com/solutions/research/research-enablement-kits, 1-26

[2] Adel Belouchrani, Member, IEEE, Karim Abed-Meraim, Jean-Fran ̧ Cardoso,

Member, IEEE and Eric Moulines, Member ,IEEE, “A Blind Source Separation

Technique Using Second-Order Statistics”, IEEE TRANSACTIONS ON SIGNAL

PROCESSING, VOL. 45, NO. 2, FEBRUARY 1997

[3] J. Yongwoong, N. Chang S., K. Young-Joo and W. Cheol, “Event-related (De)

synchronization (ERD/ERS) during motor imagery tasks: Implications for brain–

computer interfaces,” International Journal of Industrial Ergonomics, September 2011.

The multiplication operations between the tables in the SOBI

algorithm are the most time consuming piece. So in an effort to

improve time execution, a function that performs multiplication of

two tables with the help of the following burst data transfer

commands of Arm assembly has been created.

LDM :Load Multiple registers

MLA : Multiply and accumulate

Such matrix multiplication that uses burst technique can be

applied in order to transfer large volumes of data in several other

cases during EEG process such as any reversing array

procedure, eigenvalues calculation or even inside the

Centering / Whitening procedure using, the singular value

decomposition (SVD) algorithm. The latter is a factorization of a

real or complex matrix that generalizes the Eigen decomposition of

a square normal matrix to any m × n matrix via an extension of the

polar decomposition.

Burst matrix multiplication
SOBI algorithm was executed and time measured on STM32

Nucleo CortexM0 and CortexM4 developing boards (STM32F042

and STM32F401 respectively) using Arm Keil MDK. The results

revealed a speed up of 10% to 15% in all matrix sizes for both

CortexM0 and CortexM4 when using the burst commands.

Another interesting aspect based on the results is that burst has

better results when increasing the matrix size. Therefore, SOBI

algorithm using burst commands may be used on large matrix sizes

exploiting simultaneous transfer of large volumes of data which is

typically on BCI applications.

Results

STM32 Nucleo CortexM0 STM32 Nucleo CortexM4

Matrix size

(nxn)

No Burst

(sec)

With Burst

(sec)

No Burst

(sec)

With Burst

(sec)

256 0.247 0.215 0.269 0.218

542 2.147 1.886 2.256 1.004

1024 31.032 27.122 35.034 26.256

GitHub

62

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n
(%

)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

105 104 103 102

105 104 103 102

HC!irst

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n
(%

)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

LP
DD

R4
-1
x

DD
R4

-n
ew

LP
DD

R4
-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

LP
DD

R4
-1
x

DD
R4

-n
ew

LP
DD

R4
-1
y

Mitigation	Mechanism	Evaluation

8

DRAM	Cell	Leakage
Each	cell	encodes	information	in	leaky capacitors

wordline

capacitor

access
transistor

bitline

Stored	data	is	corrupted if	too	much	charge	leaks	
(i.e.,	the	capacitor	voltage	degrades	too	much)

charge
leakage
paths

[Patel+, ISCA’17]

11

Cell-to-Cell	Variation

Ca
pa
cit
or
	vo
lta
ge
	(V
dd
) 100%

0%

Vmin

time
REF REFREF

Different	RowHammer
vulnerabilities

Some	cells	are	more	vulnerable	due	to	process	variation
RowHammer Attack:
Accesses	to	nearby	row

5

The	RowHammer Vulnerability

Row	0
Row	1
Row	2
Row	3
Row	4

Repeatedly	opening (activating)	and	closing (precharging)	
a	DRAM	row	causes	RowHammer bit	3lips in	nearby	cells

Row	2open
Row	1

Row	3
Row	2closed Row	2open
Row	1

Row	3

Row	0

Row	4

Victim	Row

Victim	Row

Victim	Row

Victim	Row

Aggressor	RowRow	2open Row	2closed

DRAM Chip

Revisiting RowHammer: An Experimental Analysis
of Modern DRAM Devices and Mitigation Techniques

Jeremie Kim1,2, Minesh Patel1, A. Giray Yağlıkçı1,
Hasan Hassan1, Roknoddin Azizi1, Lois Orosa1, and Onur Mutlu1,2

6: Characterization Results

7: Evaluation of Mitigation Mechanisms

5: Experimental Methodology

2: The RowHammer Phenomenon

3: Motivation

4: Our Goal

21

1: DRAM Background

8: Future Work and Conclusion

1. Experimentally demonstrate how vulnerable modern DRAM chips
are to RowHammer and predict how this vulnerability will scale
going forward

2. Examine the viability of current mitigation mechanisms on more
vulnerable chips

• Denser DRAM chips are more vulnerable to RowHammer
• No comprehensive experimental study demonstrating how

vulnerability scales across DRAM types and tech node sizes
• Unclear whether current mitigation mechanisms will remain

viable for future DRAM chips that are likely to be more vulnerable to
RowHammer

1580 total chips tested from 300 modules

Experimental Testing Infrastructures
1. DDR3: SoftMC [Hassan+, HPCA’17]

 (Xilinx ML605)
2. DDR4: SoftMC [Hassan+, HPCA’17]

 (Xilinx Virtex UltraScale 95)
3. LPDDR4: In-house testing hardware

1. Prevent sources of interference during core test loop
 We disable:

 DRAM refresh: to avoid refreshing victim row
 DRAM calibration events: to minimize variation in test timing
 RowHammer mitigation mechanisms: to observe circuit-level effects

Test for less than refresh window (32ms) to avoid retention failures
2. Worst-case access sequence
- We use worst-case access sequence based on prior works’ observations
- For each row, repeatedly access the two directly physically-adjacent rows

as fast as possible

Row 0
Row 1
Row 2

RowRow X-1 Aggressor Row

Row X+1 Aggressor Row
Row X Victim Row

Conclusion: It is critical to research more effective
solutions to RowHammer for future DRAM chips that
will likely be even more vulnerable to RowHammer

Future Research Directions
1. DRAM-system cooperation
- A DRAM-based or system-level mechanism alone

ignores potential benefits of a holistic solution
2. Profile-guided
- Accurately profiling RowHammer-susceptible cells in

DRAM provides a powerful substrate for building
targeted RowHammer solutions e.g.:

 - Increasing refresh rate: increase refresh rate for
rows with RowHammer-susceptible cell

 - Access counters: only count accesses to rows
containing RowHammer-susceptible cells

- A fast and accurate profiling mechanism is a key
research challenge for developing low-overhead and
scalable RowHammer solutions

D
R

A
M

 B
an

k

Row 1

Row 2

Row 3

Stored data is corrupted if too much charge leaks
(i.e., the capacitor voltage degrades too much)

DRAM cells are refreshed periodically to maintain data correctness

Access

Repeatedly opening (ACT) and closing (PRE)
a DRAM row causes failures in nearby rows

If a nearby row is
activated enough
times within a
refresh window,
the charge
leakage rate can
be accelerated to
the point of
failure. Some
cells require more
hammers to fail.

RowHammer bit flip

Increased Refresh Rate: Substantial overhead for high HCfirst values. Prohibitively high refresh rates required for HCfirst < 32k.
PARA: Scales to low HCfirst values, but significantly high performance overheads (e.g., 80% performance loss when HCfirst = 128).

ProHIT MRLoc: Models for scaling ProHIT and MRLoc for HCfirst < 2k are not provided and how to do so is not intuitive.

TWiCe: Does not support HCfirst < 32k, but we evaluate an ideal version ignoring two critical issues. Ideal performs better than PARA.
Ideal: ideal refresh-based mechanism provides reasonably high normalized system performance across all tested HCfirst values.

Key Takeaways
1. PARA, ProHIT, and MRLoc mitigate
RowHammer bit flips in worst chips with
reasonable performance (92%, 100%, 100%)

2. Only PARA scales to low HCfirst but has
low normalized system performance

3. Ideal mechanism is significantly better
than existing mechanisms for HCfirst < 1024

4. Significant opportunity for developing a
scalable and low overhead solution

HCfirst

f) First RowHammer Failure per Chip
• In a DRAM type, HCfirst reduces significantly from old to new

chips, i.e., DDR3: 69.2k to 22.4k, DDR4: 17.5k to 10k,
LPDDR4: 16.8k to 4.8k

• In LPDDR4-1y chips from manufacturer A, there are chips
whose weakest cells fail after only 4800 hammers

a) RowHammer Vulnerability
• Newer DRAM chips are more vulnerable to RowHammer
b) Data Pattern Dependence
• Worst-case data pattern is same for chips of same mfg. and type-node config.
c) Hammer Count Effects
• RowHammer bit flip rates increase with technology node generation

e) Spatial Effects
• The number of RowHammer bit flips that occur in

a given row decreases as the distance from the
victim row (row 0) increases

• Chips of newer DRAM technology nodes can
exhibit RowHammer bit flips 1) in more rows and
2) farther away from the victim row

d) Hammer Count Effects
• The distribution of RowHammer bit flip density per word changes in LPDDR4

chips from other DRAM types likely due to on-die ECC
• At a bit flip rate of 10-6, a 64-bit word can contain up to 4 bit flips. Even at this

very low bit flip rate, a very strong ECC is required to prevent failures

https://www.youtube.com/watch?
v=Lqxc4_ToMUw

https://people.inf.ethz.ch/omutlu/pub/
Revisiting-RowHammer_isca20.pdf

Full Paper Full Talk Video

Fr
ac

tio
n

of
 6

4-
bi

t w
or

ds

co
nt

ai
ni

ng
 X

 b
it

fli
ps

ov

er
 a

ll
64

-b
it

w
or

ds

co
nt

ai
ni

ng
 b

it
fli

ps

Number of RowHammer bit flips per 64-bit word

Distance from victim row (Row 0)

storage density and reduce technology node size for future
chip designs. To achieve this goal, we perform a rigorous
experimental characterization study of DRAM chips from
three di�erent DRAM types (i.e., DDR3, DDR4, and LPDDR4),
three major DRAM manufacturers, and at least two di�erent
process technology nodes from each DRAM type. We show
how di�erent chips from di�erent DRAM types and technol-
ogy nodes (abbreviated as “type-node” con�gurations) have
varying levels of vulnerability to RowHammer. We compare
the chips’ vulnerabilities against each other and project how
they will likely scale when reducing the technology node
size even further (Section 5). Finally, we study how e�ec-
tive existing RowHammer mitigation mechanisms will be,
based on our observed and projected experimental data on
the RowHammer vulnerability (Section 6).
4. Experimental Methodology
We describe our methodology for characterizing DRAM

chips for RowHammer.
4.1. Testing Infrastructure

In order to characterize the e�ects of RowHammer across
a broad range of modern DRAM chips, we experimentally
study DDR3, DDR4, and LPDDR4 DRAM chips across a
wide range of testing conditions. To achieve this, we use
two di�erent testing infrastructures: (1) the SoftMC frame-
work [40, 106] capable of testing DDR3 and DDR4 DRAM
modules in a temperature-controlled chamber and (2) an in-
house temperature-controlled testing chamber capable of
testing LPDDR4 DRAM chips.
SoftMC. Figure 3 shows our SoftMC setup for testing

DDR4 chips. In this setup, we use an FPGA board with a
Xilinx Virtex UltraScale 95 FPGA [132], two DDR4 SODIMM
slots, and a PCIe interface. To open up space around the
DDR4 chips for temperature control, we use a vertical DDR4
SODIMM riser board to plug a DDR4 module into the FPGA
board. We heat the DDR4 chips to a target temperature using
silicone rubber heaters pressed to both sides of the DDR4
module. We control the temperature using a thermocouple,
which we place between the rubber heaters and the DDR4
chips, and a temperature controller. To enable fast data trans-
fer between the FPGA and a host machine, we connect the
FPGA to the host machine using PCIe via a 30 cm PCIe ex-
tender. We use the host machine to program the SoftMC
hardware and collect the test results. Our SoftMC setup for
testing DDR3 chips is similar but uses a Xilinx ML605 FPGA
board [131]. Both infrastructures provide �ne-grained con-
trol over the types and timings of DRAM commands sent to
the chips under test and provide precise temperature control
at typical operating conditions.

Figure 3: Our SoftMC infrastructure [40, 106] for testing
DDR4 DRAM chips.

LPDDR4 Infrastructure. Our LPDDR4 DRAM testing
infrastructure uses industry-developed in-house testing hard-
ware for package-on-package LPDDR4 chips. The LPDDR4
testing infrastructure is further equipped with cooling and

heating capabilities that also provide us with precise temper-
ature control at typical operating conditions.
4.2. Characterized DRAM Chips
Table 1 summarizes the DRAM chips that we test using

both infrastructures. We have chips from all of the three
major DRAMmanufacturers spanning DDR3, DDR4, and two
known technology nodes of LPDDR4. We refer to the DRAM
type (e.g., LPDDR4) and technology node of a DRAM chip
as a DRAM type-node con�guration (e.g., LPDDR4-1x). For
DRAM chips whose technology node we do not exactly know,
we identify their node as old or new.

Table 1: Summary of DRAM chips tested.

DRAM Number of Chips (Modules) Tested
type-node Mfr. A Mfr. B Mfr. C Total
DDR3-old 56 (10) 88 (11) 28 (7) 172 (28)
DDR3-new 80 (10) 52 (9) 104 (13) 236 (32)
DDR4-old 112 (16) 24 (3) 128 (18) 264 (37)
DDR4-new 264 (43) 16 (2) 108 (28) 388 (73)
LPDDR4-1x 12 (3) 180 (45) N/A 192 (48)
LPDDR4-1y 184 (46) N/A 144 (36) 328 (82)

DDR3 and DDR4. Among our tested DDR3 modules, we
identify two distinct batches of chips based on their manu-
facturing date, datasheet publication date, purchase date, and
RowHammer characteristics. We categorize DDR3 devices
with a manufacturing date earlier than 2014 as DDR3-old
chips, and devices with a manufacturing date including and
after 2014 as DDR3-new chips. Using the same set of proper-
ties, we identify two distinct batches of devices among the
DDR4 devices. We categorize DDR4 devices with a manu-
facturing date before 2018 or a datasheet publication date of
2015 as DDR4-old chips and devices with a manufacturing
date including and after 2018 or a datasheet publication date
of 2016 or 2017 as DDR4-new chips. Based on our observa-
tions on RowHammer characteristics from these chips, we
expect that DDR3-old/DDR4-old chips are manufactured at
an older date with an older process technology compared to
DDR3-new/DDR4-new chips, respectively. This enables us
to directly study the e�ects of shrinking process technology
node sizes in DDR3 and DDR4 DRAM chips.
LPDDR4. For our LPDDR4 chips, we have two known

distinct generations manufactured with di�erent technology
node sizes, 1x-nm and 1y-nm, where 1y-nm is smaller than
1x-nm. Unfortunately, we are missing data from some genera-
tions of DRAM from speci�c manufacturers (i.e., LPDDR4-1x
from manufacturer C and LPDDR4-1y from manufacturer B)
since we did not have access to chips of these manufacturer-
technology node combinations due to con�dentiality issues.
Note that while we know the external technology node val-
ues for the chips we characterize (e.g., 1x-nm, 1y-nm), these
values are not standardized across di�erent DRAM manufac-
turers and the actual values are con�dential. This means that
a 1x chip from one manufacturer is not necessarily manufac-
tured with the same process technology node as a 1x chip
from another manufacturer. However, since we do know rela-
tive process node sizes of chips from the same manufacturer,
we can directly observe how technology node size a�ects
RowHammer on LPDDR4 DRAM chips.
4.3. E�ectively Characterizing RowHammer

In order to characterize RowHammer e�ects on our DRAM
chips at the circuit-level, we want to test our chips at the
worst-case RowHammer conditions. We identify two condi-
tions that our tests must satisfy to e�ectively characterize
RowHammer at the circuit level: our testing routines must
both: 1) run without interference (e.g., without DRAM refresh
or RowHammer mitigation mechanisms) and 2) systemati-
cally test each DRAM row’s vulnerability to RowHammer

4

34

5.	First	RowHammer Bit	Flips	per	Chip

Newer chips from a given DRAM manufacturer
more vulnerable to RowHammer

Mfr. A Mfr. B Mfr. C
H

am
m

er
 C

ou
nt

 n
ee

de
d

 fo
r t

he
 fi

rs
t b

it
fli

p
(H

C
fir

st
)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K

34

5.	First	RowHammer Bit	Flips	per	Chip

Newer chips from a given DRAM manufacturer
more vulnerable to RowHammer

Mfr. A Mfr. B Mfr. C
H

am
m

er
 C

ou
nt

 n
ee

de
d

 fo
r t

he
 fi

rs
t b

it
fli

p
(H

C
fir

st
)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K

34

5.	First	RowHammer Bit	Flips	per	Chip

Newer chips from a given DRAM manufacturer
more vulnerable to RowHammer

Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K

28

DDR3-new
DDR4-old

LPDDR4-1x

Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 R

ow
H

am
m

er
 b

it
fli

ps

w
ith

 d
is

ta
nc

e
X

fro
m

 th
e

vi
ct

im
 ro

w

Distance from the victim row (row 0)

0.0
0.2
0.4
0.6
0.8
1.0

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Not Enough
Bit Flips

LPDDR4-1y
DDR4-new

Not Enough
Data

No Chips

No Chips

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

4.	Spatial	Effects:	Row	Distance

DDR3-new
DDR4-old

LPDDR4-1x

Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 R

ow
H

am
m

er
 b

it
fli

ps

w
ith

 d
is

ta
nc

e
X

fro
m

 th
e

vi
ct

im
 ro

w

Distance from the victim row (row 0)

0.0
0.2
0.4
0.6
0.8
1.0

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Not Enough
Bit Flips

LPDDR4-1y
DDR4-new

Not Enough
Data

No Chips

No Chips

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

DDR3-new
DDR4-old

LPDDR4-1x

Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 R

ow
H

am
m

er
 b

it
fli

ps

w
ith

 d
is

ta
nc

e
X

fro
m

 th
e

vi
ct

im
 ro

w

Distance from the victim row (row 0)

0.0
0.2
0.4
0.6
0.8
1.0

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Not Enough
Bit Flips

LPDDR4-1y
DDR4-new

Not Enough
Data

No Chips

No Chips

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

DDR3-new
DDR4-old

LPDDR4-1x

Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 R

ow
H

am
m

er
 b

it
fli

ps

w
ith

 d
is

ta
nc

e
X

fro
m

 th
e

vi
ct

im
 ro

w

Distance from the victim row (row 0)

0.0
0.2
0.4
0.6
0.8
1.0

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Not Enough
Bit Flips

LPDDR4-1y
DDR4-new

Not Enough
Data

No Chips

No Chips

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Chips	of	newer	DRAM	technology	nodes	can	exhibit	RowHammer
bit	=lips	1)	in	more	rows	and	2)	farther	away	from	the	victim	row.	

We	normalize	data	by	inducing	a	bit	=lip	rate	of	10-6 in	each	chip

30

4.	Spatial	Distribution	of	Bit	Flips

Fr
ac

tio
n

of
 6

4-
bi

t w
or

ds
 c

on
ta

in
in

g
X

bi
t fl

ip
s

ov
er

 a
ll

64
-b

it
w

or
ds

 c
on

ta
in

in
g

bi
t fl

ip
s

Number of RowHammer bit flips per 64-bit word

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4 5

Q.	How	are	RowHammer bit	2lips	spatially	distributed	across	a	chip?

Fr
ac

tio
n

of
 6

4-
bi

t w
or

ds
 c

on
ta

in
in

g
X

bi
t fl

ip
s

ov
er

 a
ll

64
-b

it
w

or
ds

 c
on

ta
in

in
g

bi
t fl

ip
s

Number of RowHammer bit flips per 64-bit word

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4 5

Fr
ac

tio
n

of
 6

4-
bi

t w
or

ds
 c

on
ta

in
in

g
X

bi
t fl

ip
s

ov
er

 a
ll 6

4-
bi

t w
or

ds
 c

on
ta

in
in

g
bi

t fl
ip

s

Number of RowHammer bit flips per 64-bit word

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4 5

Mfr. A Mfr. B Mfr. C

F
ra

c
ti
o

n
 o

f
6

4
-b

it
 w

o
rd

s
 c

o
n

ta
in

in
g

 X
 b

it
 fl

ip
s

o
v
e
r

a
ll

6
4

-b
it
 w

o
rd

s
 c

o
n

ta
in

in
g

 b
it
 fl

ip
s

Number of RowHammer bit flips per 64-bit word
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Not Enough
Bit Flips

Not Enough
Data

No Chips

No Chips

D
D

R
3

-n
e
w

D
D

R
4

-o
ld

L
P

D
D

R
4

-1
x

L
P

D
D

R
4

-1
y

D
D

R
4

-n
e
w

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

The	distribution	of	RowHammer bit	Blip	density	per	word	
changes	signi;icantly	in	LPDDR4	chips	from	other	DRAM	types

Representa7ve of DDR3/DDR4 chip Representa7ve of LPDDR4 chip

We	normalize	data	by	inducing	a	bit	=lip	rate	of	10-6 in	each	chip

At	a	bit	Blip	rate	of	10-6,	a	64-bit	word	can	contain	up	to	4	bit	;lips.
Even	at	this	very	low	bit	Blip	rate,	a	very	strong	ECC is	required

62

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n
(%

)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

105 104 103 102

105 104 103 102

HC!irst

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n
(%

)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

LP
DD

R4
-1
x

DD
R4

-n
ew

LP
DD

R4
-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

LP
DD

R4
-1
x

DD
R4

-n
ew

LP
DD

R4
-1
y

Mitigation	Mechanism	Evaluation

https://www.youtube.com/watch?v=Lqxc4_ToMUw
https://www.youtube.com/watch?v=Lqxc4_ToMUw
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf

FlexPool: A Distributed Model-Free Deep Reinforcement Learning
Algorithm for Shared Passengers and Goods Delivery

Kaushik B. Manchella, Abhishek K. Umrawal, and Vaneet Aggarwal
Purdue University

ADD
PHOTOS/VISUALS
TO ENHANCE THE

APPEAL
OF YOUR POSTER

• Stemming from the growth of E-Commerce, crowd-sourced delivery is

also on the upsurge in adoption and demand. This includes last-mile

delivery services (e.g. Amazon Flex), and urban delivery services (e.g.

Postmates, DoorDash, Instacart, etc.)

• This points toward an increased load on the road transportation system

which would have ramifications from both environmental sustainability

and operational profitability standpoints.

• A joint transportation system for goods and passengers could address

the aformetioned problem, however all the existing methods proposed

in research literature rely on an accurate pre-defined model of the

urban environment.

An illustration of multi-hop transportation scenario with hybrid
delivery workload. Vehicle 1 and 2 are in zones A and C
respectively. Zone B represents a “hop-zone” where the packages
part of the goods order packages transfer over to another vehicle

• Our transportation system considers the combination of passenger
ridesharing with Multi-hop goods delivery, where an existing ridesharing
service is leveraged to “hitchhike” packages for their delivery.

• We develop a Model-Free algorithm that dispatches vehicles to locations
of anticipated demand for passengers and goods.

• Given an objective as a reward function, the model-free algorithm learns
the system dynamics through its interaction with the environment.

• Our proposed algorithm optimizes for the following objective:
• Minimize the supply-demand gap for all requests
• Minimize dispatch time for fleet vehicles
• Minimize extra travel time incurred by requests due to vehicle sharing
• Minimize number of hop transfers for a package/good
• Minimize the number of fleet vehicles on the road

The simulator operates in this grid like environment – gives state to agent and gets
actions as output

Supply & demand features:
• Predicted number of

requests In next 30 mins
• Locations of the vehicle

across the grid

23 x 23 x 12 19 x 19 x 16 17 x 17 x 32

15 x 15 x 12

15 x 15 x 64

15 x 15 x 32

15 x 15 x 128

Auxiliary features :
• Current location of vehicle
• Current normalized location
of the vehicle
• Sensibleness of move, etc.

225 Q values for a
particular vehicle state

(4) Q-Network Architecture

• We have proposed an efficient model-free algorithm
where reinforcement learning techniques are used to
learn the optimal decisions for each vehicle
individually.

• We have observed improved vehicle utilization,
vehicle fuel efficiency in the context of serving the
combined demands of passengers and goods.

• As a future research direction, we recommend
exploring the feasibility of hop transfers for goods
with practical incentives.

1. A. Alabbasi, A. Ghosh, and V. Aggarwal, “DeepPool:
Distributed model free algorithm for ride-sharing using
deep reinforcement learning,” IEEE Trans. Intelligent
Transportation Systems (to appear), 2019.
2. T. Oda and C. Joe-Wong, “Movi: A model-free
approach to dynamic fleet management,” in IEEE
INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 2708–2716.

(3) FlexPool Algorithm

(1) Dataset (2) Simulator Setup
• To simulate passenger request, we use a real

taxi trip dataset (NYC Taxi-Limousine
commission-trip record data 2018). We
specifically simulate the request time,
location, and destination.

• For goods requests, we extract customer
check-in traffic from Google Maps (see below)
for all postal service, meal delivery and
supermarket locations and build a request
generator.

Schematic of the grids – package
transfer can take place only at hop
zones (in green)

New York city is divided into 212 x 219 grids. The
passenger+goods pickup demand is anticipated
over the next 30 minutes as seen above.

This plot shows the convergence of Q-values.
During training. We see convergence in
approximately 15,000 training steps. Q-values are
representative of the reward function (the
objective of our system). In optimizing for the Q-
values, we optimize for the metrics mentioned in
the problem definition.

Baselines:
• FlexPool w/ Hoptrips: This is our proposed

algorithm where each vehicle is capable of serving
both passengers and goods. The goods are routed
using hop transfers.

• FlexPool w/o Hoptrips: In this baseline, we
present the results when hop transfers are
disabled from our proposed algorithm.

• Separate Vehicles: This baseline represents how
majority of crowd-sourced transportation happens
nowadays. Ridesharing and crowd-sourced
package delivery is performed by completely
separate fleet.

Evaluation Results:
• Active Vehicles Ratio: This metric indicates how

many vehicles are currently on the road to serve
the demand of requests. Our simulations show
that FlexPool w/ Hoptrips performs approx. 30%
better than the baselines. With fewer vehicles on
the road, environmental sustainability is improved
through minimizing congestion, emissions etc.

• Fuel Cost per Delivery: This metric computes the
amount of fuel each vehicle expended normalized
to the number of requests fulfilled. Our
simulations show that FlexPool w/ Hoptrips
performs approx. 35% better than the baselines.
This points to an improved Operational
profitability of the proposed method.

Arxiv Link: https://arxiv.org/pdf/2007.13699.pdf

https://arxiv.org/pdf/2007.13699.pdf

Testing Concurrency in Compilers
with Téléchat
Luke Geeson and Jade Alglave

luke.geeson, jade.alglave,(@arm.com)

Abstract

Open source compilers are broken, and that means your programs are broken too.

Compiler Correctness must account for the memory model in the source and target
program.

This isn’t simple however as we must account for interpretations of language standards,
the effects of optimizations, and requirements of the architecture.

We should not leave this work to interpretation, yet there is no tool that can automatically
check correctness of C++ compilers with respect to memory models [2, 3, 4].

We propose the Téléchat tool to check whether compiler translation preserves concurrent
program semantics over the source and target memory models.

Message Passing MP - C/C++11
initially x=0 and y=0
Processor 0 (P0) Processor 1 (P1)
(a): x ← 1 (c): r0 ← y
(b): y ← 1 (d): r1 ← x
Can r0=1 and r1=0 occur?

For C++ this is undefined behaviour if it happens.
For AArch64 without synchronization this is allowed!
How do we check that compilers have got it right?

compiled to⇓ or possibly⇒

MP - AArch64
initially P0:X1=x and P0:X3=y and P1:X1=y and P1:X3=x

P0 P1
MOV W0,#1 LDR W0,[X1]
STR W0,[X1] LDR W2,[X3]
MOV W2,#1
STR W2,[X3]

Can P1:X0=1 and P1:X2=0 occur? Yes!

Test MP, Generic(ARMv8 AArch64)

Thread 0

Thread 1

e: Wyq=0
Init

b: Wy=1
proc:0 poi:3
STR W2,[X3]

ob ca

f: Wxq=0
Init

a: Wx=1
proc:0 poi:1
STR W0,[X1]

ca

d: Rx=0
proc:1 poi:1
LDR W2,[X3]

rf ob

po

c: Ry=1
proc:1 poi:0
LDR W0,[X1]

rf ob

po

ob
ca

Allowed by the Arm architecture [2]
Runnable at:

http://diy.inria.fr/www/?record=aarch64&litmus=MP

Acknowledgements

In no particular order:
Lee Smith, Alastair Reid, Luc Maranget, Gustavo Petri, Christof Douma, Pablo Barrio,
Oliver Stannard, Peter Smith, The Arm Compiler & GCC Teams, Arm Architecture
Technology Group, Arm Research Security Group.

Main Ideas

Téléchat is a translation validation tool that uses memory models to validate concurrent
programs.

∅ litmus/source source

litmus/asm

generate l2c

compare
compile

Takes small concurrent programs called litmus tests, compiles them, and checks whether
the expected behaviour of the compiled program is a refinement of the source program
behaviour with respect to the C/C++11 memory model and relaxed Arm Memory model.

Rely on the Herd [1] toolsuite for this, which forms the basis of the official Arm memory
model [2, 3] and has models of the latest rc11 memory model for C/C++11 [4].

Can run assembly tests on hardware if we wish.

We can check whether:
•Compilers have introduced forbidden behaviour.
•Re-ordering or compiler optimization has led to invalid behaviour.
• Language semantics are violated, security properties.

MP+dmbst+dmbld - AArch64
initially P0:X1=x and P0:X3=y and P1:X1=y and P1:X3=x

P0 P1
MOV W0,#1 LDR W0,[X1]
STR W0,[X1] DMB LD
DMB ST LDR W2,[X3]
MOV W2,#1
STR W2,[X3]

Can P1:X0=1 and P1:X2=0 occur? No!

Test MP+DMB.ST+DMB.LD, Generic(ARMv8 AArch64)

Thread 0

Thread 1

e: Wyq=0
Init

b: Wy=1
proc:0 poi:4
STR W2,[X3]

ca

d: Rx=0
proc:1 poi:2
LDR W2,[X3]

ob

f: Wxq=0
Init

a: Wx=1
proc:0 poi:1
STR W0,[X1]

ca

rf ob

j: DMB ST
proc:0 poi:2

DMB ST

po

dmb.st

ob

po

c: Ry=1
proc:1 poi:0
LDR W0,[X1]

rf

ob

p: DMB LD
proc:1 poi:1

DMB LD

po

ob dmb.ld

po

ob ca

ob

ob

Forbidden by the Arm architecture [2]
Runnable at:

http://diy.inria.fr/www/?record=aarch64&litmus=MP+dmb.st+dmb.ld

References

[1] J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation, testing,
and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2), July 2014.

[2] Arm. Arm architecture reference manual armv8, for armv8-a architecture profile, sec-
tion b2.3 for the memory model. https://developer.arm.com/documentation/
ddi0487/latest. accessed: 2020-08-06.

[3] Arm. Arm memory model tool. https://developer.arm.com/architectures/
cpu-architecture/a-profile/memory-model-tool. accessed: 2020-08-06.

[4] ISO. Iso c++ standards. https://isocpp.org/std/the-standard. accessed:
2020-08-06.

Arm Research Summit 2020

http://diy.inria.fr/www/?record=aarch64&litmus=MP
http://diy.inria.fr/www/?record=aarch64&litmus=MP+dmb.st+dmb.ld
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/documentation/ddi0487/latest
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://developer.arm.com/architectures/cpu-architecture/a-profile/memory-model-tool
https://isocpp.org/std/the-standard

Mitigating Harmful Prefetches with Reinforcement
Learning Majid Jalili, and Mattan Erez

Single approach for providing fine-grain tunable prefetch throttling
mechanisms based on the reinforcement-learning (RL)

Challenges

Prefetchers knobs

• Degree: number of prefetch requests to issue per trigger

• Prefetch distance: how far ahead of the demand access
stream are the prefetch requests issued

Impact of degree on IPC

We need many prefetchers with many knobs to configure

Solution

• We propose to design prefetcher throttler as an RL agent to learn automatically
an optimal throttling policy via interaction with the rest of the system

• Q-learning is a model-free reinforcement learning algorithm to learn a policy
telling an agent what action to take under what circumstances

• Each state determines with a tuple <Accuracy, Coverage, Latency> with SARSA
update

Methodology

SPEC CPU 2017 and GAP benchmark suite ,
SimPoint [115] methodology, 500M warmup and
500M simulation

Results

Single core

Multi-core

Future Work

Many prefetchers setting

Deep Q-learning with Experience Replay

Reliability through data manipulation
How Drop-and-Rearrange strategy can help
to improve MLC STT-RAM reliability?

A Lightweight Reliability Enhancement Scheme
for MLC STT-RAM based CNN Accelerators
Masoomeh Jasemi and Nader Bagherzadeh
University of California, Irvine

Problem and Motivations
• MLC STT is large, but unreliable
• CNN is robust
• Asymmetric reliability of MLC STT-RAM

Future Work
• Other memory technologies

(ReRAM)
• Integer representation
• RNN and recommendation

systems
• Compression and quantization

Solutions
1) Drop:

Analytical Model

Bandwidth

B
an

dw
id

th
 (B

/C
yc

le
)

Conv11 Conv12 Conv13 FC6 Inc5b_3x3 Inc5a_3x3 Conv11 Conv12 Conv13 Conv2 Inc3b_3x3 Inc3a_3x3

Off-chip On-chip

VGG16 Inception V3 VGG16 Inception V3

0

5

10

15

20

25

30
256KB 512KB 1024KB 2048KB

Energy

SD
C

 R
at

e

Alexnet Lenet VGG16 InceptionV3
0

0.02

0.04

0.06

0.08

0.1

0.12 BaseLine DARA-1 DARA-2 DARA-3 DARA-4

Methodology
• TensorFlow
• Graph
• TensorFI
• NVsim
• SCALE-Sim

2) ReArrange:

SDC

The	Virtual	Block	Interface:	A	Flexible	Alternative
to	the	Conventional	Virtual	Memory	Framework
Nastaran Hajinazar ,	Pratyush Patel	,	Minesh Patel		,	Konstantinos	Kanellopoulos ,	Saugata Ghose	,	
Rachata Ausavarungnirun ,	Geraldo	F.	Oliveira		,	Jonathan	Appavoo ,	Vivek	Seshadri		,	Onur Mutlu

7: Example Use Case: Address Translation

5: VBI Design Overview

2: Example Challenges of the Conventional Virtual Memory Framework

3: Our Goal

1

1: Motivation

8: Conclusion

Design	an	alternative	virtual	memory	framework that
• Efficiently and	flexibly supports	increasingly	diverse	system	

configurations
• Provides the	key	features	of	conventional	virtual	memory	

framework	while	eliminating its	key	inefficiencies

• Modern	computing	systems	continue	to	diversifywith	respect	
to	system	architecture,	memory	technologies,	and	applications’	
memory	needs

• Continually	adapting	the	conventional	virtual	memory
framework	to	each	possible	system	configuration	is	challenging

VBI	is	a	promising	new	virtual	memory	framework

• Can	enable	several	important	optimizations
• Increases	design	flexibility	for	virtual	memory
• A	new	direction	for	future	work	in	novel	virtual	

memory	frameworks

1. Page	tables	need	to	be	shared	
between,	and	understood	by	
both	the	hardware	and	the	OS,	
resulting	in	rigid	page	table	
structures

- Challenging	to	implement	the	
page	table	flexibility	that	
applications	can	benefit	from

Key	Takeaways
1.	VBI-full improves	the	performance,	by	2.4X	on	
average	compared	to	Native

2. VBI-full enables	significant	performance	
improvement in	virtualized	environments	(4.3X	on	
average	compared	to	Virtual)

3.	VBI-full outperforms	Perfect	TLB (by	49%	on	
average)	as	the	optimizations	that	VBI	enables	are	
not	limited	to	only	reducing	the	address	
translation	overhead

https://www.youtube.com/watch?v
=7c6LgVrCwPo

https://people.inf.ethz.ch/omutlu/pub
/VBI-virtual-block-interface_isca20.pdf

Full Paper Full Talk Video2 3 4 5 6 7

1,2 3 1 1 4

5 1 6 7 1,4

Applications

Virtual	Memory
managed	by	the	operating	system

Hardware

Cannot	adapt
efficiently

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables
managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes Guest OS

Host Virtual Address Space

Host OS

Host Page Tables

Physical Memory

---- virtualization layer ----

Guest Virtual Address Space
g VAS

Guest Page Tables

VAS 1 VAS 2

guest	virtual
– to	–

host	virtual	

host	virtual
– to	–

host	physical	

P2

P1

2. In	virtual	machines,	both	the	
guest	and	host	OS	perform	
address	translation,	resulting	in	
an	extra	level	of	indirection

- Challenging	to	perform	computation	
in	virtualized	environments,	
efficiently

Virtual Address Space (VAS)
VAS 1

Page Tables
managed by the OS

Slow Mem.Fast Mem.

P1

3. OS	that	defines	and	manages	the	
address	mapping,	has	low	visibility	
into	fine-grained	runtime	memory	
behavior	information

- Challenging	in heterogenous	memories
to	make	timely	migration	decisions	
based	on	quickly	changing	memory	
access	patterns	or	other	dynamic	
behavior

• Globally-visible	VBI	address	space
- Consists	of	a	set	of	virtual	blocks	(VBs)	of	different	sizes
- Provides	system-wide unique	VBI	addresses
- VBI	addresses	are directly	used	to	access	on-chip	

caches
- Pros:	Enables	inherently	virtual	caches

• All	VBs	are	visible	to	all	processes
- OS controls	which	processes	access	which	VBs
- Each	process	has	its	own	permissions

(read/write/execute)	when	attaching to	a	VB
- OS	maintains	a	list	of	VBs	attached	to	each	process	

used	to	perform	permission	checks

• Processes	map	each	semantically	meaningful	unit	of	
information to	a	separate	VB
- e.g.,	a	data	structure,	a	shared	library

• Memory	management	is	delegated to	the	Memory	
Translation	Layer	(MTL) in	the	memory	controller

- Address	translation	and	Physical	memory	allocation
- Translation	structures	are	not	shared	with	the	OS
- Per-VB	translation	structure tuned	to	the	VB’s	

characteristics
- Pros:	many benefits,	including

- Address	translation	overhead for	the	
processes	running	inside	a	virtual	machine,	
is	no	different	than	the	processes	running	
natively	on	system

- Enabling	flexible	translation	structures

Virtual Address Space (VAS)

P1

VAS 1

P2 Pn

Page Tables

managed by the OS

Physical Memory

VAS 2 VAS n

. . .
Processes

VBIConventional Virtual Memory

one-to-one
mapping (OS)

fixed-size (256 TB)
VBI Address Space

P1

VB 1

P2 Pn

Memory Translation Layer

in the memory controller

Physical Memory

VB 2 VB 3 VB 4

. . .Processes

many-to-many
mapping (OS)

variable-size (4 KB – 128 TB)

VBI-to-physical translationvirtual-to-physical translation

Key	idea:
Delegate physical	memory	management	to	dedicated	hardware	
in	the	memory	controller

Guiding	Principles:
1. Size	virtual	address	spaces	appropriately	for	processes
- Mitigates translation	overheads of	unnecessarily	large	address	
spaces
2. Decouple	address	translation	from	access	protection
- Defers address	translation	until	necessary	to	access	memory
- Enables	the	flexibility of	managing	translation	and	protection	

using	separate	structures
3. Communicate	data	semantics	to	the	hardware
- Enables	intelligent resource	management

4: Virtual Block Interface (VBI)

Achieving	the	guiding	principles:
1. A	process’	VBs	define	its	address	space,	i.e.,	

determined	by	the	actual	needs	of	the	process
2. Address	mapping is	dedicated	to	the	MTL,	while	OS

retains	full	control	over	managing	the	access	
permissions

3. Each	VB	is	associated	with	a	set	of	information:
⁃ A	System-wide	unique	ID
⁃ Size	of	the	VB
⁃ Enable	bit
⁃ Reference	counter: number	of	processes	attached	

to	the	VB
⁃ Properties	bit	vector:	semantic	information	about	

VB	contents,	such	as	access	pattern,	latency	
sensitive	vs.	bandwidth	sensitive

6: Optimizations Enabled by VBI

0.0

0.5

1.0

1.5

2.0

2.5

ast
ar

bz
ip2

Ge
ms
FD
TD mc

f
mi
lc

na
md sje

ng

bw
av
es
-17

de
ep
sje
ng
-17

lbm
-17

om
ne
tp
p-1
7

im
g-d
nn

mo
se
s

Gr
ap
h5
00 AV

G

Virtual Perfect TLB VBI-Full

Sp
ee

du
p

13
.3

8.
9

• Native:	applications	run	natively	on	an	x86-64	system
• Virtual: applications	run	inside	a	virtual	machine	(accelerated	using	2D	page	walk	cache	[Bhargava+,	ASPLOS’08])
• Perfect	TLB:	an	unrealistic	version	of	Native	with	no	translation	overhead
• VBI-Full:	VBI	with	all	the	optimizations	that	it	enables

Naturally	enabled	by	VBI	and	not	easily	attainable	before:
• Appropriately	sized	process	address	space
• Flexible	address	translation	structures
• Communicating	data	semantics	to	the	hardware
• Inherently	virtual	caches
• Eliminating	2D	page	walks	in	virtual	machines
• Delayed	physical	memory	allocation
• Early	memory	reservation	mechanism

VB

Enable

Reference
Counter

Properties

Size

X

Inherent to
VBI design

Covered in
the paper

https://www.youtube.com/watch?v=7c6LgVrCwPo
https://people.inf.ethz.ch/omutlu/pub/VBI-virtual-block-interface_isca20.pdf

Temporal Safety for CHERI Heaps
Nathaniel Wesley Filardo,† Brett F. Gutstein,? Jonathan Woodruff,? Sam Ainsworth,? Lucian Paul-Trifu,? Brooks Davis,‡ Hongyan Xia,? Edward Tomasz Napierala,? Alexander Richardson,? John Baldwin,§ David Chisnall,† Jessica Clarke,? Khilan Gudka,? Alexandre Joannou,?

A. Theodore Markettos,? Alfredo Mazzinghi,? Robert M. Norton,? Michael Roe,? Peter Sewell,? Stacey Son,? Timothy M. Jones,? Simon W. Moore,? Peter G. Neumann,‡ Robert N. M. Watson?

†Microsoft Research; ?University of Cambridge; ‡SRI International; §Ararat River Consulting

Spatial Safety with CHERI and CheriABI
Data Code

CHERI introduces architectural memory capabilities: unforgeable bearer tokens
pairing a traditional pointer with bounds and permissions. Attempting to use a
capability to access out of bounds memory or beyond its permissions instead
raises an architectural trap. In “pure capability” C/C++ atop CheriABI, all
language and runtime pointers are lowered to capabilities and capability bounds
are applied by the compiled code, runtime library, and kernel. Notably, malloc()
bounds each returned pointer to grant access only to one (padded) allocation.

Use After Free and Use After Reallocation

Allocated

Pointers to heap object

Free

Pointer retained past free()

Reallocated

Reuse aliases objects
“Use After Free” flaws occur when software continues to use a reference to an
allocation whose lifetime has ended. Such uses risk aliasing with new objects
occupying reused memory (“Use After Reallocation”): new allocations proper or
allocator internal metadata. These aliased accesses leak information and/or
corrupt program state and are widely used components of exploit chains.
These make up 24% of Microsoft CVEs 2006–2018! (Matt Miller, BlueHat IL, 2019)

Temporal Safety Through Sweeping Revocation
We aim to deterministically mitigate use-after-reallocation vulnerabilities
involving heap pointers, causing architectural traps on the use of stale references
that have come to refer to regions of memory holding new objects. We will
accomplish this by revocation, replacing these stale references with invalid
ones, eliciting a trap on any attempted subsequent use, before any reuse of
free()-d memory.
Capabilities to heap allocations may be stored in heap, stack, or global memory,
register files, or even the kernel. Revocation must scan all of these locations,
precisely identify capabilities, and ensure that the application cannot retain a
stale reference across the end of a scan.

Quarantine
Revoking on every free() would be prohibitively expensive, but revocation must
be performed to ensure that no surviving references exist to free()-d memory.
Instead, we accumulate free() memory, without any reuse, in a quarantine.
Only once quarantine is sufficiently large do we trigger revocation, reclaiming
many free() objects at once.
Pages in quarantine can have their physical memory released back to the system
prior to the virtual address being revoked and made reusable. These released
pages have modest associated costs, and so the quarantine need only grow with
fragmentation, not total free() throughput.

Cornucopia: An End-to-End Implementation in CheriBSD
We have implemented revocation-based heap temporal safety in CheriBSD for
CheriABI programs. Changes were confined to the kernel and runtime libraries;
application code already ported to CheriABI needed no further work.

ke
rn

el

sh
ad

ow

sta
ck

glo
ba

ls

he
ap

re
gis

te
rs Cornucopia adds an in-kernel revocation service,

which finds and removes dangling pointers (×) when
requested by the application. Userspace indicates
quarantine through a shadow bitmap which covers
all of user memory. The revoker is a shared resource,
and multiple allocators can safely share revocation
work without direct communication.

Revocation is mostly concurrent with the application.
A first, background, pass sweeps all pages holding
capabilities; a second pass, with application threads
paused, re-sweeps pages written to since the start of
the first pass (as well as capabilities held in registers
and the kernel) before resuming the application.

sf

Sf

SF

sF

state

sweep

sweep

sweep

initialinter-

sweep

sweep

finalintra-

exit

Morello has all the architectural mechanisms required for Cornucopia.

Cornucopia Runtime Overheads
Cornucopia compares favorably against prior temporal safety systems:

1.0

1.2

1.4

1.6

1.8

2.0

astar bzip2 gobmk hmmer libquantum omnetpp sjeng xalancbmk geomean

N
o

rm
a

liz
e
d
 E

x
e
c
u
ti
o

n
 T

im
e

Cornucopia, inline
Cornucopia, offload

Oscar 4.6 4.1

pSweeper-1s
DangSan 7.5
CRCount

BOGO

12.9

Geo. Mean Worst Seen
Inline 5.8% 26.2%

Offload 1.9% 8.9%

Average cycle overhead is under 2% on
CHERI-compatible SPEC2006 benchmarks when
equipped with a second core for background
scanning (and excluding the cost of zeroing free()
memory before reuse, ≈ 3% overhead).

Cornucopia DRAM Access and Pause Times
Cornucopia induces substantial DRAM traffic overheads (up to 43%) and pause
times (up to 201M cycles). These need significant improvement.

1.0

1.1

1.2

1.3

1.4

astar
bzip2

gobmk

hmmer

lib
quantum

omnetpp
sjeng

xalancbmk

N
o
rm

a
liz

e
d
 D

R
A

M
 T

ra
ff
ic

Quarantine
Inline

Offload

 1

 10

 100

 1000

astar

gobmk

hmmer

lib
quantum

omnetpp

xalancbmk

M
ill

io
n
 C

y
c
le

s Inline
Concurrent

+ Paused

Concurrency reduces pause times but at the cost of increased DRAM traffic,
which directly translates to increased power use.

Looking Ahead: Reducing Costs of Revocation
Load Barriers and Page Generations Stopping application threads during
revocation is unfortunate, but is required in Cornucopia to ensure that the
revoker catches up to the application. Instead, we can revoke read access from
pages at the beginning of revocation and allow the application to read only
pages that we have cleaned. Page faults guide us to pages needed urgently,
which can be cleaned as needed. Background scans ensure that eventually all
pages are cleaned again. Morello features a fast mechanism for revoking access
to all capability-bearing pages without needing to update all page table entries.
Excitingly, unlike Cornucopia, this mechanism scans each page once per
revocation and should have commensurately lower DRAM traffic.
CHERI+MTE ARMv8.5-MemTag (MTE) looks to be able to, when suitably
combined with CHERI, deterministically enhance temporal safety. free() can
immediately reuse a granule of memory by incrementing its MTE tag, until all
have been used, at which point, the memory must be quarantined. MTE tags
obviate Cornucopia’s shadow bitmap: the revoker prunes all capabilities with
mismatched tags. The potential benefits include significant reduction in
quarantine growth, making revocations multiplicatively less frequent, and prompt
reuse of memory, which simplifies system software, improves cache utilization,
and decreases heap fragmentation.

Conclusion
Always-on temporal memory safety for heaps in CheriABI programs looks to be
nearing practicality. CHERI, despite having no overt support for temporal safety
or capability revocation, nevertheless provides an excellent architectural
substrate for software-managed revocation.
New architectural mechanisms proposed by the CHERI team at Cambridge and
soon to be available in Morello and other prototypes, in combination with
ongoing engineering effort, should let us lower the runtime overheads, DRAM
traffic costs, and pause times of revocation significantly.

Further Reading
I CHERI Project Homepage: http://cheri-cpu.org
I CheriABI: Enforcing Valid Pointer Provenance and Minimizing Pointer

Privilege in the POSIX C Run-time Environment (ASPLOS 2019):
http://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf

I Cornucopia: Temporal Safety for CHERI Heaps (IEEE S&P 2020):
http://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf

Acknowledgements
This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”) and HR0011-18-C-0016
(“ECATS”). The views, opinions, and/or findings contained in this report are those of the authors and
should not be interpreted as representing the official views or policies of the Department of Defense or the
U.S. Government. We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ABP
Grant (EP/P020011/1), the ERC ELVER Advanced Grant (789108), the Gates Cambridge Trust, Arm
Limited, HP Enterprise, and Google, Inc. Approved for Public Release, Distribution Unlimited.

http://cheri-cpu.org
http://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/201904-asplos-cheriabi.pdf
http://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/2020oakland-cornucopia.pdf

Powering the Internet of Things:

Alternative form factors for Energy Storage

1

ELECTRONICS, POWER AND

ENERGY CONVERSION GROUP

Flexible Printed Batteries

Pritesh Hiralal, Dilek Ozgit Butler, Karolina Spalek, Gehan Amaratunga
a Zinergy UK Ltd., Unit 2, Trinity Hall Industrial Estate, CB4 1TG, Cambridge, UK

*pritesh@zinergy-power.com

The Phone….. Its Energy

Hiralal et al. ACS Nano, 4. 2730-2734, 2010

Zinergy’s MK1Series is the

first of a new generation of

ultra-thin flexible battery

products. Made by printing

thin layers of functional

materials onto a custom

designed flexible packaging.

These zincs based primary

cells are suitable for cost

effective low power

electronic applications

where safety and

environmental credentials

are fundamental.

As Deposited

1st Cycle

2nd Cycle

3rd Cycle

4th Cycle

The printed battery

The Initial step was to turn a classic
Alkaline battery into a flexible device

*

This was achieved by tailoring the material
in each layer of the battery into a flexible
form factor. E.g. by using carbon fibre and
solid electrolytes.

3 Microchip Embedded Energy Storage

The Sensor

Its EnergyThe sensor…..

0 1000 2000 3000 4000 5000
0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

C
a

p
a

c
it

a
n

c
e

/A
r
e

a
 (

m
F

/c
m

2
)

Scan rate (mV/s)

-1.0 -0.5 0.0 0.5 1.0

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

C
u

rr
e
n

t
(m

A
)

Voltage (V)

 20 mV/s

 50 mV/s

 100 mV/s

 200 mV/s

 500 mV/s

 1000 mV/s

 2000 mV/s

 5000mV/s

CNT Forest Density – Currently

5 x1010 to 2 x1011 tubes / cm2
Current electrodes achieve an areal

capacitance of ~1mF/cm2 at scan rates up to

100 V/s. Capacitance can be correlated to the

density of carbon nanotube forests, meaning

that two orders of magnitude higher should be

achievable by fine-tuning growth processes.

Our approach – To use vertically

oriented carbon nanotubes which can be

lithographically patterned and grown

directly onto Si/SiO2 chips by chemical

vapour deposition. Interdigitated

electrodes form an ideal, low internal

resistance structure for surface micro-

capacitors.

Lithographically patterned

high aspect ratio

electrodes mean high

power densities can be

achieved

Electrode witdh ~50µm

Electrode height ~50µm

Process flow for the fabrication of micro-capacitorsM
e
a

s
u

re
m

e
n

ts
:

S
.
E

s
c
o

n
ja

u
re

g
u

i

Large-Area Electronics

Large-Area Electronics (LAE), including printed,

plastic, organic and flexible electronics, is a new way

of making electronics that:

• is enabled by new materials that can be processed

at low-temperatures;

• enables the use of new manufacturing processes

for electronics such as printing and digital

fabrication;

• enables products having new form factors, new

cost structures and the potential for customisation

2 Direct Printing on deviceIts EnergyThe Shirt…..
Why Direct Print?

The ability to print directly

onto a device, for instance

a smart label or tag has

several advantages

including:

1/reduced production cost

2/improved contact

reliability and

3/ increased production

speeds.

This capability combined

with a roll to roll print press

opens the avenue for huge

volumes

Battery printed directly onto RFID tag,

allowing for significant cost reduction in

bonding costs.

Ozgit et al. ACS Appl. Mater & Inter. 2014 Commercial Product
2 0 m m

3 8 m m

3
0

 m
m6

0
 m

m

Pre-production

Experimental

Printed battery discharge curve

A typical roll on which

Smart tags are produced,

which can be used for direct

printing

Sheet of batteries printed

onto Smart tags.

Food is a constant need for any living being, THIS is an established truth. With the

increasing population today, the demand for food is at an all-time high. Usage of land is

also increasing in order to satisfy the growing needs of the growing population. For this

purpose, the land previously used for agricultural activities is now being used for other

activities.

●In agricultural sector, the amount of water wastage is very high in the irrigation

system and this is one of the prime reasons for weed formation and plant diseases. So to

eradicate this problem a system of hydroponics was introduced which is a no-soil

farming concept, but the nutrients might not be given at full potential in that system and

usage of water is also high, and only giving a constant water supply would lead to the

plant disease.

●The usage of water resources Is very high in agriculture sector , in which a lot of water

used is left stagnant, resulting the formation of weeds in the field.

●Here comes the requirement for a farming solution, which gives a better yield, uses

minimal water supply, utilizes lesser space and more importantly a much healthier

option.

ABSTRACT

INNOVATION

BLOCK DIAGRAM

IMPLEMENTATION

⮚

⮚

3-D Modeling of our Design

This modular and concept model has a very vast yield production. But the mode

of communication is totally based on IOT.

The design includes a disk like feature at the bottom which allows the upper

channel to align along sun light.

The designed AutoCAD model is the merely

an accurate representation of the prototype

model where the humidifier is placed at the

center of the Cultivation Pod.

As shown the plant spacing at each

side of the pod where the sampling is placed

also Styrofoam is placed for proper stem support .

❖ Our design model is a octagonal shaped , each of the face consists of sampling s

for planting . So in our design the roots are planted in the area and then the water

,required minerals are given directly to the roots of the plant.

❖ The circular spaces in device is where the plant samplings are placed ,But unlike

that, our proposed model shall be used to solve the flaws in hydroponics. Also our

design is compatible in both indoor and outdoor farming .

❖ Also in a sudden floods scenario the entire yield can be stored at safer place

without effecting the crop .

❖ Our model shall provide the required water, nutrients directly to the roots of the

plant. This proposed model would minimize the water intake by plants in

agriculture. Also, the major effecting factor in agriculture sector is weed formation

and diseases.

❖ So our solution will be giving the required nutrients and water supply directly to the

roots of plants.

❖ The entire process is monitored using certain sensors; the data is updated through

the cloud on regular basis.

IMPACT !

Our product can give 10 times greater and 2 times faster yield as Compare with Soil Cultivation

RESULTS

⮚ One of the major novelty of our solution is conservation of water.

⮚Maximum yield (about 6 times more) can be obtained by providing a minimum amount of

water.

⮚Since there is no soil involved, weeds are no longer a problem.

⮚The nutrients required are directly fed to the roots.

⮚Complete monitoring of the system.

⮚There are many regions in India prone to calamities like droughts, floods, cyclones, etc.

Since our design is portable, it can be transported (which would not affect the crop) to a

safer place, which might not be possible with regular farming.

NOVELTY OF OUR SOLUTION

A prediction unit would

determine plant growth and

data is updated using IoT.

Now the parameter taken into

consideration is the height of

the crop.

So using certain polynomial

regression technique where

X-axis = Time interval

Y-axis = Plant height(in

cm)

Yellow representation

is the Predicted Scale

Red representation is

the reference growth

Curve

Blue representation is

the Growth curve of

crop recording every

day

The mobile application is the key element in terms of informing the user with

certain important elements regarding the crop growth.

The application has 4 Pages interfaced.

1) The nutrients which are to be added and at what quantity with crop time taken

into factor.

2) The sensors units would give a brief values of the data recorded on real time.

3) Followed by the temperature and humidity

4) The additional crop data is also provided as well.

Cumulatively the UI of the application is so calibrated in such a way that the user

only has to select the crop and the entire details are calculated according to the

acquired sensor values

The Automation unit where user could turn of and on the system through this

mobile application

DESIGN STRUCTURE:

AUTHORS

⮚ JAYANTI SAIKIRAN, UG Student, ECE Department, B.V. Raju Institute of

Technology, Narsapur, Telangana, India

⮚ ITHARAJU NAVEEN, UG Student, ECE Department, B.V. Raju Institute of

Technology, Narsapur, Telangana, India

⮚ RANIRUDH REDDY , Assistant Professor, ECE Department, B.V. Raju Institute of

Technology, Narsapur, Telangana, India

B V RAJU INSTITUTE OF TECHNOLOGY, Narsapur, Telangana, India
CroPillar - ARM Research Summit- 2020

A Vector-Length Agnostic Compiler for the Memory Limited
Connex-S Accelerator

Alex E. Şuşu prof. Gheorghe M. Ştefan

DCAE department, Politehnica University of Bucharest, Romania

Key Idea

Connex-S compiler generates efficient code from sequential C programs for the Connex-S vector accelerator,
in a portable way for arbitrary vector widths (and the CPU).
We achieve portability mainly by employing a simple JIT assembly technique, with very small overhead.

State-of-the-Art

Similar work is done by Bocchino et al. [3] for the Motorola Reconfigurable Streaming Vector Processor
(RSVP), also of customizable width, but their input programs are vector LLVM IR code.
Recently, ARM’s compiler for the SVE (Scalar Vector Extension) unit is able also to generate portable
binary programs, which are independent of the vector width [9].
Nuzman et al. generate portable SIMD code by using GCC to output vector .Net code, then use Mono VM
to run the code on x86 with SSE or PowerPC with an AltiVec SIMD unit [7].

The Connex-S Accelerator

I Easily customizable vector processor, with 32-4096 lanes (or execution units, EUs or cells) [8], designed to
accelerate Basic Linear Algebra Subroutines (BLAS), deep learning and Computer Vision.

I Use 16-bit integer EUs since narrow datapaths have good power consumption and performance [4].

I Currently, it is implemented in Xilinx Zynq-7020 FPGA SoC (28 nm technology), coupled with the
integrated ARM Cortex A9 CPU. It is low power, suitable to accelerate embedded applications - for 128
lanes it consumes at most 1.5 Watts [10, 2], but as a 28 nm IC it draws more than an order of magnitude
less power [5].

Figure 1: The architectural organization of a system with Connex-S accelerator

I The processor has: i) a linear-array interconnection network [1] called inter-cell shift vector unit exposed to
the programmer, ii) a separate banked vector scratchpad memory (SPM) of 256 KB normally, called Local
Storage (LS) and iii) a hardware sum-reduction tree.
. Connex-S has a predictable performance: it has SPM instead of caches, it fetches an instruction per

cycle, very simple branching checking for a scalar counter, and very few data hazards.

I The vector processor implements a predication mechanism with conditional instruction blocks of arbitrary
size, similar to ARM’s Thumb-2 it instruction.
. The processor performs clock gating for the lanes that are not selected during predicated execution. This

can yield at maximum 33% power savings.

The OPINCAA Assembler

I Our compiler generates code for OPINCAA, a runtime assembler and coordination C++ library for
Connex-S.
. OPINCAA can assemble at runtime scalar immediate operands from symbolic C/C++ expressions

representing the width of the vector processor, the sizes of program arrays, access indices of arrays, loop
trip counts or scalar elements of arrays, in effect allowing to run portable OPINCAA programs on
Connex-S processors of different widths.

. Connex-S ASM limitations addressed: no loop nesting, no scalar memory/registers, repeat loops of only
constant trip counts, no kernel arguments, no function call mechanism.

I OPINCAA has a coordination API for Connex-S kernel dispatch, synchronization between CPU and
Connex-S and memory transfer to/from LS memory.

The Connex-S Compiler

I The compilation flow diagram is presented in Figure 2.

Figure 2: The stages of the Connex-S compiler

I We write a back end for the wide Connex-S vector processor with special support for:

. symbolic scalar immediate operands, which are handled by the OPINCAA runtime assembler, effectively
passing (scalar) source program variables to the kernel;

. efficient emulation for 32-bit integer (i32) and 16-bit floating point (f16) types by inlining and optimizing
(CSE, LICM) the code of the operations discussed in Table 1.

Type i16 i32 f16
Operation

add 1∗ 15 279
sub 1∗ 15 280
addc 1∗ 21 -
subc 1∗ 21 -
mult 1∗ (+1) 27 249
srl, sra 1∗ 33 -
div 471 232

red (+) 1∗,. 14. 128.

Table 1: The number of Connex instructions implementing the emulated opera-
tions for the various types. The operations of type i16, marked with *, are directly
implemented in hardware. By . we mean we need to emulate also on the CPU.

I We also extend LLVM’s loop vectorizer pass, which finds and handles individual loops that are profitable to
vectorize, in order to:

. generate automatically coordination calls;

. perform static analysis with Symbolic Range Analysis (SRA) [6] and ScalarEvolution to retrieve the
number of array elements accessed and the trip counts of loops. We recover them as symbolic expressions
from LLVM IR to C/C++, which provides also input to our symbolic static LS memory allocator;

. encode in the compiled OPINCAA programs the width of the processor as a parameter, thus being able
to run most programs on Connex-S machines of any width;

. implement efficiently loop nests by orchestrating Connex-S hardware loop instructions and unrolling
primitives.

We compile with GCC the resulting C++ OPINCAA program targetting the CPU interfaced with the
Connex-S accelerator of arbitrary vector width.

Compilation Examples

// C program : M u l t i p l i c a t i o n o f ma t r i c e s w i th i 1 6
// e lements , i n row−major o rde r , ma t r i x B t r an s po s e d .
//#d e f i n e N 128
#de f i n e N 256
short A[N] [N] , B [N] [N] , C [N] [N] ;
void MatMul BTransposed () {

i n t i , j , k ;
fo r (i = 0 ; i < N; ++i)

fo r (j = 0 ; j < N; ++j) {
C[i] [j] = 0 ;
fo r (k = 0 ; k < N; ++k)

C [i] [j] += A[i] [k] ∗ B[j] [k] ;
}

}

// Compiled OPINCAA program - works for any N and CVL

void MatMul_BTransposed () {

// Due to lack of space we handle only this case:

assert(N % CVL == 0 && 2 * N*N * sizeof(TYPE) <= LS_MEM_SIZE);

// Assume: N % CVL == 0 (otherwise: pad with 0, etc)

writeDataToConnex(A, N * N / CVL , N * N, 0);

writeDataToConnex(B, N * N / CVL , N * N,

/*offset*/ N * N / CVL);

BEGIN_KERNEL("MatMul_BTransposed.i16");

EXECUTE_IN_ALL(

for (i = 0; i < N; ++i) {

R(0) = 0;

R(1) = 1;

R(2) = R(0);

R(3) = N * N / CVL; // start offset for B

REPEAT(N);

R(2) = R(3);

R(4) = i * N / CVL; // vload with index for A[i]

R(5) = 0; // accumulator

// Vectorized innermost loop k: strip -mine dot product

for (idxLLVM = 0; idxLLVM < N; idxLLVM += CVL) {

R(9) = LS[R(4)]; // read A[i] vector

R(6) = LS[R(2)]; // read B[j] vector

R(4) = R(4) + R(1);

R(2) = R(2) + R(1);

R(6) * R(9); R(10) = MULT_LOW ();

R(5) = R(5) + R(10); // accumulate (for dot product)

}

REDUCE R(5); // compute C[i][j]

R(3) = R(2);

END_REPEAT;

} // End for i loop

);

END_KERNEL("MatMul_BTransposed.i16");

executeKernel("MatMul_BTransposed.i16");

readCorrectReductionResults(C, N * N, sizeof(short));

}

// Another C program f o r mat r i x m u l t i p l i c a t i o n : i n t e r c h a n g e
// l o op s j and k to avo i d t r a n s p o s i t i o n o f B . Also , r e s u l t
// i s put i n LS memory , which h e l p s i f r e s u l t i s b e i ng
// r eu s ed e . g . i n Power o f mat r i x k e r n e l . % p rocedu r e .

// C program : Floyd−Warsha l l f o r i 1 6 we i gh t s .
#def ine N 128
short A[N] [N] ;
fo r (k = 0 ; k < N; ++k)

fo r (i = 0 ; i < N; ++i) {
// LICM c o r r e c t i f graph wo s e l f−l o o p s
short Aik = A[i] [k] ;
fo r (j = 0 ; j < N; ++j)

// Path r e l a x a t i o n s t e p
A[i] [j] = min (A[i] [j] , Aik + A[k] [j]) ;

}

// Compiled OPINCAA program

// Assume: N % CVL == 0

writeDataToConnex(A, N * N / CVL , N * N, 0);

BEGIN_KERNEL("FloydWarshall_i16");

EXECUTE_IN_ALL(

for (k = 0; k < N; ++k) {

R(0) = 0;

R(1) = 1;

R(4) = 0;

R(5) = 0; // LS line for row of A[k]

REPEAT(N);

R(2) = i * N / CVL; // LS line for row of A[i]

R(3) = A[i][k]; // INCORRECT: need read from LS

for (idxLLVM = 0; idxLLVM < N; idxLLVM += CVL) {

R(6) = LS[R(5)];

R(7) = LS[R(2)];

R(5) = R(5) + R(1);

R(2) = R(2) + R(1);

// Path relaxation step

R(7) = R(7) + R(3);

R(8) = R(6) < R(7);

NOP;

);

EXECUTE_WHERE_LT(

R(7) = R(6) | R(6);

);

EXECUTE_IN_ALL(

LS[R(4)] = R(7);

R(4) = R(4) + R(1);

} // End for index loop

END_REPEAT;

} // End for k loop

REDUCE R(0);

);

END_KERNEL("FloydWarshall_i16");

executeKernel("FloydWarshall_i16");

readReduction (); // for sync

readDataFromConnex(A, N * N);

Experiments

I Figure 3 shows performance speedups when running on Connex-S synthesized at 100 MHz on Xilinx
Zynq-7020 FPGA, with 128 lanes and 256 KB LS memory [2], w.r.t. one ARM core of Cortex A9 at 667
MHz.
. GCC 7.2 is unable to vectorize for ARM NEON the following kernels using i16 elements: DotProd (dot product), MatMul (square matrix multiplication,

the second matrix being already transposed), Sum of Squared Differences (SSD) and Sum of Absolute Differences (SAD). The slowdown of DotProd is

due to the small arithmetic intensity, while for i32 elements it gets even smaller since the CPU code gets vectorized and we emulate i32 on Connex-S.
. The subunitary speedups can be avoided by increasing the Connex-S vector width to e.g. 1024.
. Kernel runtime assembly takes on average 20.78 ms, but we cache the binary instruction stream for the same kernel input sizes.

I We can run the same generated C++ OPINCAA program on Connex-S machines of different widths - see
Figure 4. The log-log plot for the speedup of a given benchmark in this figure is not linear due to the
non-negligible communication, vector loop prologue and epilogue overheads and scalar code.

Do
tP
ro
d

Ct
Po
p-
Re
du
ce

M
at
M
ul
-1
28

M
at
M
ul
-1
70

M
at
M
ul
-2
56

M
at
M
ul
-5
12

M
at
M
ul
-T
-1
28

SS
D-
12
8

SA
D-
12
8

co
va
ria
nc
e-
12
8

co
rre
lat
io
n-
12
8

0.064

0.16

0.4

1

2.5

6.25

15.6

0.43

3.4

6.03

3.72

6.92 7.58

5.32
6.56

11.33

7.57 · 10−2

0.33
0.36

0.43

0.62

0.46 0.47

1.37
1.51

0.77

1.8

2.4

1.52

1.05

4.41

1.98 1.88

i16 i32(emulated) f16(emulated)

Figure 3: Semi-log plot with the speedups of the
benchmarks on Connex-S with 128 lanes, at 100 MHz
w.r.t. the dual-core ARM Cortex A9 at 667 MHz with
a total of two 128-bit NEON SIMD units

M
at
M
ul
-1
28

M
at
M
ul
-2
56

M
at
M
ul
-5
12

M
at
M
ul
-1
02
4

2

4

8

16

32

2.5
2.34

2.48

3.14

6.03

6.92
7.58

9.68

6.03

10.23

16.14

24.28

32 64 128 256 512 1024

Figure 4: Semi-log plot with the speedups of i16 benchmarks on Connex-S with
a number of lanes between 32 and 1024, clocked at 100 MHz w.r.t. the dual-core
ARM Cortex A9 at 667 MHz with a total of two 128-bit NEON SIMD units

I For MatMul-128 we achieve on Connex-S 1.12 GOPS/Watt for type i16, 0.172 GOPS/Watt for type i32
and 0.031 GFLOPS/Watt for type f16. For the MatMul-128.i16 kernel we achieve 1.22x better energy
efficiency w.r.t. the dual-core ARM Cortex A9 integrated in the Zynq SoC, which is low power, and for
most other i16 kernels we achieve even higher ratios.

Future Work

I Compare throughput and Energy Delay Product (EDP) of f16 kernels when running on very wide (4096
lanes) Connex-S with 16-bit narrow EUs w.r.t. mainstream GPUs and ARM SVE.

References

[1] S. G. Akl.

The Design and Analysis of Parallel Algorithms.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.

[2] C. B̂ıră, L. Gugu, R. Hobincu, L. Petrică, V. Codreanu, and S. Coţofană.

An Energy Effective SIMD Accelerator for Visual Pattern Matching.

In Proceedings of the 4th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies, 2013.

[3] R. L. Bocchino, Jr. and V. S. Adve.

Vector LLVA: A Virtual Vector Instruction Set for Media Processing.

In Proceedings of the 2nd International Conference on Virtual Execution Environments, VEE ’06, pages 46–56, New York, NY, USA, 2006. ACM.

[4] D. Brooks and M. Martonosi.

Dynamically Exploiting Narrow Width Operands to Improve Processor Power and Performance.

In Proceedings of the 5th International Symposium on High Performance Computer Architecture, HPCA ’99, pages 13–, Washington, DC, USA, 1999.

IEEE Computer Society.

[5] M. Maliţa and G. M. Ştefan.

Map-Scan Node Accelerator for Big-Data.

In 2017 IEEE International Conference on Big Data (Big Data), pages 3524–3529, Dec 2017.

[6] G. Mendonça, B. Guimarães, P. Alves, M. Pereira, G. Araújo, and F. M. Q. a. Pereira.

DawnCC: Automatic Annotation for Data Parallelism and Offloading.

ACM Trans. Archit. Code Optim., 14(2):13:1–13:25, May 2017.

[7] D. Nuzman, S. Dyshel, E. Rohou, I. Rosen, K. Williams, D. Yuste, A. Cohen, and A. Zaks.

Vapor SIMD: Auto-vectorize Once, Run Everywhere.

In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO ’11, pages 151–160, Washington, DC,

USA, 2011. IEEE Computer Society.

[8] G. M. Ştefan and M. Maliţa.

Can One-Chip Parallel Computing Be Liberated From Ad Hoc Solutions? A Computation Model Based Approach and Its Implementation.

In Proceedings of the 18th Int. Conf. on Computers (CSCC’14), Recent Advances in Computer Engineering Series 23, pages 582–597, 2014.

[9] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell, G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker.

The ARM Scalable Vector Extension.

IEEE Micro, 37(2):26–39, Mar. 2017.

[10] A. E. Şuşu.

Compiling for the Wide Connex Vector Processor.

Parallel Architectures and Compilation Techniques (PACT), Cyprus, 2018.

Created with LATEXbeamerposter

Visit https://gitlab.dcae.pub.ro/research/ConnexRelated/ - Opincaa C++ library has also cycle-accurate simulator for Connex of custom width. alex.susu@gmail.com

Mignon: ML using Tsetlin Machine
A Hardware Demonstration Adrian Wheeldon and Jie Lei

{adrian.wheeldon, jie.lei}@ncl.ac.uk

Motivation

I Neural networks are presently king in machine learning.

. Based around floating-point calculations.

. Learning mechanism makes explainability difficult.

I Mignon is inherently CMOS-compatible.

. Hardware-centric algorithm – Tsetlin Machine.

. FSM-based learning ∴ trivial on-chip implementation.

. No floating-point used in learning or classification.

. Easily-explainable classification.

. Inherently dependable.

Demo System Design

I World’s first ML hardware based on Tsetlin Machine.

I Proof of concept classifies Iris flowers.

FPGA

MicrocontrollerRotary Encoder Display

Mignon

Iris Dataset
16 + 2 bits

Inference Result
2 bits

Iris Flower Classification

I Length and width of petal and sepal identifies the species.

. Measurements are converted to 4-bit binary.

I 16-bit feature inputs to Mignon.

I 2-bit class encoding for 3 flower species.

. Input expected class, and output predicted class.

Tsetlin Machine Algorithm

I Reinforcement of actions using learning automata.

. FSMs with stochastic component for diverse learning.

I Inference using propositional logic and majority voting.

. Simple logic leads to easy explainability.

. Majority voting ensures high dependability.

Feedback

V
ot

in
g

Input

Output

Learning Automata

0

Results

I Iris Accuracy; Mignon: 97.0 %, XGBoost: 96.7 %.

I Inference energy vs competing hardware in 65 nm silicon:

BNNa Mignon∗ Neuromorphicb CBNNc

88.5 Top J−1 62.7 Top J−1 48.2 Top J−1 25.2 Top J−1

∗
From high-confidence ASIC simulation.

I Faster learning convergence vs ANN:

20 40 60 80 100 120
Number of epochs

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

TM
ANN

Future Work

I ASIC currently in manufacture.

I Algorithm improvements for decreased area and power.

I Develop low power/energy applications.

In collaboration with CAIR, Full Mignon Demo, Papers and Resources. aW. Choi, DAC 2018. bD. Miyashita, JSSC 2017. cH Yonekawa, IPDPSW 2017.

mignon.ai Arm Research Summit, 2020 µSystems Group, Newcastle University

https://cair.uia.no
https://www.youtube.com/watch?v=BzaPGByX-hg
http://www.mignon.ai
http://mignon.ai

1 © 2019 Arm Limited

Alpha-Blending - An Optimization Technique to
Quantize Low-precision Neural Networks

Zhi-Gang Liu and Matthew Mattina @arm research

❖ The straight-through estimator, introduced by Hinton, is a gradient
estimator that allows to use binary threshold units in neural networks
trained by backpropagation. It uses the threshold unit normally during the
forward pass and replacing it with the identity function during the
backward pass. However, STE is an empirical approach, lacks theoretical
justification.

▪ Quantize parameter w to wq to minimize loss
function L(wq) of a neural network using STE

𝑤

wq

𝑤

𝑤𝑞

𝝏𝒘𝒒

𝝏𝒘
= 𝟎 a.e.

0

0.5

1

0 10 20 30

α

epoch

α curve

❖ Alternative to the well-known Straight-Through Estimator (STE), Our
approach – Alpha Blending (AB) uses the affine combination (with
coefficient α) of the trainable parameter w and the corresponding
optimization wq in the loss function for optimization training. BP doesn’t go
through the threshold op, therefore mitigated it’s vanished gradient issue.
Ramp up the coefficient α from 0 to 1 gradually.

▪ Quantize parameter w to wq to minimize loss
function L(wq) of a neural network using AB

❖ Apply AB to BinaryNet on CIFAR10
▪ Binarlization

𝑠𝑖𝑔𝑛 𝑥 = ቊ
+1
−1

𝑥 ≥ 0
𝑥 < 0

[Hubara et al., 2016a] Itay Hubara,
Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I.
Guyon, and R. Garnett, editors,
Advances in Neural Information
Processing Systems 29, pages 4107–
4115. Curran Associates, Inc., 2016.
https://github.com/itayhubara/Binary
Net.tf

70.9
62.1

41.5

65.2
56.3

68.4
63.3

49.8

70.91
61.6

40.91

65.01
55.8

68.2
63

49.2

0

50

100

1.0/224 0.75/128 0.25/128 1.0/128 0.5/128 0.75/224 0.50/224 0.25/224

A
cc

u
ra

cy
 %

Mobilenet V1

Top-1-FP32 Top-1-STE-INT8 Top-1-AB-INT8 Top-1-AB-INT4/8

❖ Apply AB to quantize MobileNet v1 on ImageNet

75.2 75.675 7575.1 75.4
73.2

72
73.8 74.6

71.2 72.2

65

70

75

80

ResNet50v1 ResNet50v2

To
p

-1
 A

cc
u

ra
cy

 %

Quantization of Resnet50

Fp32 baseline STE 8-bit AB 8-bit STE 4/8-bits AB 4/8-bits AB 4/4-bits

❖ Apply AB to quantize ResNet50 on ImageNet

Main-Memory Accelerators for Bandwidth-Bound DL Inference

Benjamin Cho and Mattan Erez

• Bandwidth-bound DL inference
o MLP-dominant models

§ Main target: GEMM in FC layers
o Small batch size (short latency target)

§ Tall-skinny & fat-short activations
o Large memory-resident weights

§ Likely in multi-tenant servers

We accelerate bandwidth-bound DL inferences with
processing in main memory, overcoming limited command
BW and locality-breaking XOR-based address mappings.

• Roofline analysis
o CPU execution

§ BW bound for batch ≤32
o GPU execution

§ PCIe BW bound OR
§ Low BW utilization

• Opportunity and challenges
o Processing in main memory (PIM)

§ High memory BW
§ Already sharing data with the CPU
§ Freeing up the CPU resources

o Challenges
§ Complex CPU address mappings
§ Exploiting GEMM locality
§ Avoid command BW bottleneck

• Proposed mechanisms
o Address mapping aware block grouping

§ Grouping the weight matrix blocks
based on temporal locality à
effective data reuse in scratchpad

o StepStone address generation
§ Generate physical addresses in each

PIM à CPU-independent execution
§ Sequence addresses for each block

group à exploit temporal locality

• Key performance results
o Comparison to CPU

§ Batch-1: 45x speedup
§ Batch-32: 4x speedup

• Power and energy results
o Power: dominated by DRAM power
o Energy

§ Lower DRAM energy when accessing
from closer to the memory cells

§ Impact of overheads ↑ when N ↑

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

BG DV BG DV BG DV

N=1 N=4 N=16

Po
w

er
 p

er
 D

RA
M

 d
ev

ice
 (W

) SIMD Scratchpad DRAM Localization/Reduction

0

150

300

450

600

750

900

BG DV BG DV BG DV

N=1 N=4 N=16

pJ
/o
p

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BG DV BG DV BG DV

N=1 N=4 N=16

Po
w

er
 p

er
 D

RA
M

 d
ev

ice
 (W

)

0.01

0.1

1

10

100

1000

10000

100000

0.01 0.1 1 10 100 1000 10000

Pe
rfo

rm
an

ce
 (G

flo
ps

/s
)

Operational intensity (Flops/byte)

CPU (weight in main memory)

GPU (weight in device memory)

GPU (weight in main memory)

CPU

PCIe

GPU

Data loading
overhead

CPU
underutilization

0.01

0.1

1

10

100

1000

10000

100000

0.01 0.1 1 10 100 1000 10000

Pe
rfo

rm
an

ce
 (G

flo
ps

/s
)

Operational intensity (Flops/byte)

CPU (weight in main memory)

GPU (weight in device memory)

GPU (weight in main memory)

BG-level PIM (weight in main memory)

DV-level PIM (weight in main memory)

StepStone PIM (BG)

PCIe

CPUStepStone PIM (DV)
GPU

Common DL-inference GEMM dimensions

Host

Rank
0

Rank
1

Rank
2

Rank
3

Controller

CPU
Cores

CPU
Memory

Controller

PIM ctrl signal

Status update

DRAM
Interface

CPU interface Mem. Access

CPU-side PIM and memory controller

 ① StepStone-CH

Device
0

Device
1

Device
2

Device
7

…

②
 StepStone-D

V

PIM
Controller

Copy
Engine

…

Bank
Bank
Bank
Bank

Bank
Bank
Bank
Bank

I/O ports + PIM ctrl
③ SS-BG SS-BG

Bank
Bank
Bank
Bank

Bank
Bank
Bank
Bank

SS-BG

Bank groups
DRAM device

SS-BG

DIMM

Control/Status
Reg.

Scratchpad

SIMD
unit

DRAM Opnd.

Host interface

Memory interface

Host memory operations

Ctrl. logic
Addr.
Gen.…

PIM architecture

5 - 020 19 18 17 16 15 14 13 12 11 10 9 8 7 6
CH

RK

BG0
BG1

PIM ID (0): 0 0 0 0 MROW MCOL

Group ID (0): 0 0 19 18 13 1214

GP1
GP0

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8 9 a b c d e f

8 9 a b c d e f
1011 1213 1415 1617
1819 1a1b 1c1d 1e 1f

1011 1213 1415 1617
1819 1a1b 1c1d 1e 1f

8 9 a b c d e f

8 9 a b c d e f
1011 1213 1415 1617
1819 1a1b 1c1d 1e 1f

1011 1213 1415 1617
1819 1a1b 1c1d 1e 1f

1

2

3

4

Matrix A
(Shared)

Matrix C
(Locallized)

N

K

M

✕

=

Shared by 4 PIMs
(Replication)

Shared by 4 PIMs
(Reduction)

Ex
ec

ut
io

n
or

de
r

Matrix B (Localized)

N

Blocked GEMM for PIM0

Multi-Layer Perceptron (MLP)

GEMM

	Benjamin Cho
	Summit 2020 - Poster PDFs
	Amit Kumar Singh -poster
	Ananda Samajdar_Poster
	Apostolos Kokolis
	Athanasios Stratikopoulos_poster
	Benjamin C. Lee_Poster
	Gregory Kalogiannis and Chassapis_Poster
	Jeremie S Kim_poster_vfinal
	Kaushik Manchella_poster
	Luke Geeson_JadeAlglave_Poster
	Majid Jalili_Poster
	Masoomeh Jasemi_Poster
	Nastaran Hajinazar_Poster
	Nathanial Filardo_Poster
	Pritesh Hiralal_Poster
	R.Anirudh Reddy, Jayanti Saikiran, Itharaju Naveen_Poster
	Summit 2020 - A Vector-Length Agnositc Compiler, A.Susu - Poster
	Summit 2020 - Mignon, A.Wheeldon - Poster
	Zhi-Gang Liu and Matthew Mattina_Poster

