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My previous post provided an introduction to the concept of memory access ordering. It did not 

however provide any solution to the problem, or necessarily specify where such ordering can be 

significant. 

Now, not all software developers need to be deeply aware of memory access ordering or barriers. 

Unless your code interacts directly with hardware, interacts directly with code executing on other cores 

or directly loads or generates instructions to be executed, things will mostly Just Work. If your 

interaction with hardware is completely through a device driver (meaning: no device control registers 

mapped directly into your application), then it is the responsibility of the driver to enforce ordering. If 

your communication with software running on a different core makes use of a multithreading API, for 

example using Pthreads or Java threads, then it is the responsibility of that API to enforce ordering. If 

your program executes on an operating system that implements demand paging, then clearly it is the 

responsibility of the operating system to enforce ordering of such operations. 

However, if you are writing device drivers, implementing your own thread-communications or creating 

a JIT compiler, then not being aware of the proper use of barriers can lead to unexpected and difficult 

to diagnose problems. Where your program requires a specific order of memory accesses to be seen by 

multiple cores or devices in the system, the solution is called barriers.  

While the underlying architectural concepts are interesting in themselves, they are not what the 

majority of software developers concerned with barriers need to know about. For that reason, this post 

covers barrier use within the Linux kernel only. I promise to return to the gritty detail in a later post.  

So, what are these barriers then? 

A barrier, in some architectures called a fence, is an operation that explicitly enforces some type of 

ordering of memory accesses. On the higher level this can mean compiler directives preventing 

load/store operations from being reordered across a line in the source code, but leaving the compiler 

free to rearrange memory accesses on either side with other accesses on the same side. On the lower 

level, this can mean dedicated instructions stopping execution on a core until all previous memory 

accesses are guaranteed to be visible to other agents in the system. An agent is any device in the 

system capable of initiating bus transactions - for example a processor or a DMA controller. 

 

Figure 1 shows an example of a barrier affecting the ordering of load-store instructions.  
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Figure 1: Example of barrier effect 

There is an ordering dependency that the effects of Store 1 are visible to Load 2. For example, Store 1 

might be a write to a configuration register that remaps the physical address of a peripheral that is then 

read from by Load 2. Note that accesses on either side of the barrier can still be freely reordered where 

there are no address dependencies.  

Barriers in the Linux kernel 

Because the compiler directives, barrier instructions and other system operations will differ between 

vendors, architectures and overall set of system components, the Linux kernel defines a portable set of 

barrier operations that need to be implemented for each architecture. Since the supported architecture 

with the weakest memory model (effectively the one that permits the most reordering) was the DEC 

Alpha, this was used as the reference architecture. No other architectures have since surpassed the 

DEC Alpha in this regard, but ARMv7-A comes pretty close. The full documentation of the barriers 

available in the Linux kernel can be found in linux/Documentation/memory-barriers.txt, but I will give 

a quick intro here.  

Linux barrier API 

General barrier 

A general barrier has no runtime effect, it is only an instruction to the compiler to prevent reordering of 

memory accesses for optimization purposes. 

Statement Description 

barrier() 

Compiler barrier only. The compiler will not reorder memory accesses from one side of 

this statement to the other. This has no effect on the order that the processor actually 

executes the generated instructions. 

 

Mandatory barriers 

Mandatory barriers are used to enforce memory consistency on a full system level. The most common 

example of this is when communicating with external memory mapped peripherals. All mandatory 

barriers are guaranteed to expand to at least a compiler barrier, regardless of target architecture.  



Statement Description 

mb() 

A full system memory barrier. All memory operations before the mb() in the instruction 

stream will be committed before any operations after the mb() are committed. This 

ordering will be visible to all bus masters in the system. It will also ensure the order in 

which accesses from a single processor reaches slave devices. 

rmb() 
Like mb(), but only guarantees ordering between read accesses. That is, all read operations 

before an rmb() will be committed before any read operations after the rmb(). 

wmb() 
Like mb(), but only guarantees ordering between write accesses. That is, all write 

operations before a wmb() will be committed before any write operations after the wmb().  

 

SMP conditional barriers 

The SMP conditional barriers are used to ensure a consistent view of memory between different cores 

within a cache coherent SMP system. When compiling a kernel without CONFIG_SMP, all SMP 

barriers are converted into plain compiler barriers. 

Note: SMP barriers are a subset of mandatory barriers, not a superset (which is a common 

misunderstanding). An SMP barrier cannot replace a mandatory barrier, but a mandatory barrier can 

replace an SMP barrier. 

Statement Description 

smp_mb() 

Similar to mb(), but only guarantees ordering between cores/processors within an SMP 

system. All memory accesses before the smp_mb() will be visible to all cores within the 

SMP system before any accesses after the smp_mb(). 

smp_rmb() Like smp_mb(), but only guarantees ordering between read accesses. 

smp_wmb() Like smp_mb(), but only guarantees ordering between write accesses. 

Implicit barriers 

Locking constructs available within the kernel act as implicit SMP barriers, in the same way as pthread 

synchronization operations do in user space. When using these to protect a shared resource, explicit 

barriers need not be used as well (for the purpose of ensuring consistency of that resource). This does 

not however remove the need for explicit barriers when communicating with external masters. 

Due to a large number of device drivers not using the required barriers, I/O accessor macros (readb(), 

iowrite32() etcetera) for the ARM architecture act as explicit memory barriers when the kernel is 

compiled with CONFIG_ARM_DMA_MEM_BUFFERABLE. This was added in linux-2.6.35.  

Other barriers 

There are other barriers available within the Linux kernel as well. This post covered only the most 

commonly required ones. Please see the Linux kernel documentation for more information. 

 



Usage examples 

The Linux kernel patch submission guidelines state that "All memory barriers {e.g., barrier(), rmb(), 

wmb()} need a comment in the source code that explains the logic of what they are doing and why.". 

Although this is not always adhered to, this means that the kernel source itself can be a useful 

reference for the use of barriers. For example, the following is taken from 

linux/drivers/net/8139too.c:  

        /* 

   * Writing to TxStatus triggers a DMA transfer of the data 

   * copied to tp->tx_buf[entry] above. Use a memory barrier 

   * to make sure that the device sees the updated data. 

   */ 

        wmb(); 

        RTL_W32_F (TxStatus0 + (entry * sizeof (u32)), 

       tp->tx_flag | max(len, (unsigned int)ETH_ZLEN)); 

 

This code is executed after some data has been written into a buffer to be handed over to a DMA 

engine. The wmb() ensures that the write into the buffer is committed before the write that initiates the 

DMA transaction, removing a risk for data corruption. Since only the ordering between these two 

specific accesses is necessary, and they are both writes, a wmb() is the correct choice. Note that this 

barrier is also SMP safe, as its description is a superset of the smp_wmb() functionality.  

Another example from linux/drivers/net/bnx2.c:  

        /* Memory barrier necessary as speculative reads of the rx 

   * buffer can be ahead of the index in the status block 

   */ 

        rmb(); 

        while (sw_cons != hw_cons) { 

 

As described by the comment, in this situation the primary purpose of the barrier is to prevent the 

processor (as well as the compiler) from performing read accesses described within the while loop 

before that control block is actually entered.  

Cost of barriers 

The very reason for using barriers is to prevent our tools and hardware from performing unsafe 

optimizations. Also, the different types of barriers exist in order to describe exactly which memory 

ordering you need to enforce. This means that starting to insert barriers everywhere, or to use mb() 

wherever a barrier is needed, can have a negative impact on your software performance. It can be well 

worth spending the extra time to figure out whether you actually need a barrier in a specific situation, 

and if so which specific barrier it should be.  

Future posts 

My next post will be about the barrier instructions and operations available in the ARM architecture.  
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