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In my previous posts, I have introduced the concept of memory access ordering and discussed 

barriers and their implementation in the Linux kernel. I chose to do it in this order because I 

wanted to start by communicating the underlying concepts before I went into detail about what 

the ARM architecture does about memory ordering. This post goes into the juicy bits of what this 

actually means and how this is handled in the ARM architecture. 

Two separate concepts are relevant to memory access ordering in the ARM architecture — 

memory types and shareability domains. These progressively made their explicit entry into the 

ARM architecture in versions 6 and 7, implemented by the ARM11 and Cortex family of 

processors respectively.  

Enter the abstract 

When describing many of the concepts mentioned in this post, the ARM Architecture Reference 

Manual makes frequent use of the words/phrases observer/observers and is observed to or must 

observe. In practice, this refers to Master bus interfaces and how the devices controlling those 

interfaces, as well as the interconnect, must handle transactions. Only a Master interface can 

observe a transaction. Since all bus transactions are initiated by a Master, the ordering of 

accesses arriving at Slave interfaces can be inferred from the Master ordering rules. Note that 

transaction ordering does not refer simply to the order in which transactions leave a Master 

interface - they can often be reordered in the memory system, and can be observed in different 

order by different Masters where not explicitly ordered. 

Memory types 

Before the ARMv6 architecture, not much explicit was defined about the out-of-ordering of 

memory accesses — the Sequential Execution Model was assumed to apply to all instructions. 

Processors that implemented caches and write buffers could mark regions of memory as being 

cacheable or bufferable without greater side effects than the obvious ones.  

However, for modern processors that implement multiple cores, out-of-order execution or simply 

permits certain accesses to be buffered and others to happen synchronously, it is vital that certain 

rules are defined for what constraints apply to:  

 the order in which the memory accesses of one core relate to the surrounding instructions  

 the order in which the memory accesses of one core can be observed by other cores 

within a multi-core processor  

 the order in which the memory accesses of a processor can be observed by other Masters 

on the system bus  
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I will not go into full detail of the different memory types in this post (that is enough information 

for its own post), but I will give a quick overview of the points relevant for this post. Memory 

types (and their additional attributes such as cache policy) are configured in the translation tables 

the operating system sets up for the MMU.  

Normal memory 

Normal memory is effectively for all of your data and executable code. This memory type 

permits speculative reads, merging of accesses and (if interrupted by an exception) repeating of 

writes without side effects. Accesses to Normal memory can always be buffered, and in most 

situations they are also cached - but they can be configured to be uncached. There is no implicit 

ordering of Normal memory accesses, beyond pure address dependencies and control 

dependencies. When not explicitly restricted, the only limit to how out-of-order non-dependent 

accesses can be is the processor's ability to hold multiple live transactions.  

Device memory and Strongly-ordered memory  

The Device and Strongly-ordered memory types are used with memory mapped peripherals or 

other control registers. For the purposes of this post, Device and Strongly-ordered memory are 

quite similar, and with the ARMv7-A Large Physical Address Extension (LPAE), this becomes 

even more true since processors implementing the LPAE treat Device and Strongly-ordered 

memory regions identically. ARMv7-A processors that do not implement the LPAE can set 

device memory to be Shareable or Non-shareable.  

Accesses to these types of memory must happen exactly the number of times that executing the 

program suggests they should. Two writes to the same location must be performed as two writes, 

and two reads from the same location must both take place. This is obviously important when 

you are accessing peripheral control registers. There is however no guarantee about ordering 

between memory accesses to different devices, or usually between accesses of different memory 

types.  

Barriers 

Barriers were introduced progressively into the ARM architecture.  

 Some ARMv5 processors, such as the ARM926EJ-S, implemented a Drain Write Buffer 

cp15 operation, which halted execution until any buffered writes had drained into the 

external memory system.  

 With the introduction of the ARMv6 memory model, this operation was redefined in 

more architectural terms and became the Data Synchronization Barrier. ARMv6 also 

introduced the new Data Memory Barrier and Flush Prefetch Buffer cp15 operations.  

 ARMv7 evolved the memory model somewhat, extending the meaning of the barriers - 

and the Flush Prefetch Buffer operation was renamed the Instruction Synchronization 

Barrier.  



 ARMv7 also allocated dedicated instruction encodings for the barrier operations. Use of 

the cp15 operations is now deprecated and software targeting ARMv7 or later should use 

the DMB, DSB and ISB mnemonics.  

 And finally, ARMv7 extended the Shareability concept to cover both Inner-shareable and 

Outer-shareable domains (see below). This together with AMBA4 ACE gives us barriers 

that propagate into the memory system.  

So, what are these barriers then, and what do they do?  

Instruction Synchronization Barrier (ISB) 

The Instruction Synchronization Barrier ensures that any subsequent instructions are fetched 

anew from cache in order that privilege and access is checked with the current MMU 

configuration. It is used to ensure any previously executed context changing operations 

(including cp15 operations) will have completed by the time the ISB completed.  

Access type and domain are not really relevant for this barrier. It is not used in any of the Linux 

memory barrier primitives, but appears here and there in memory management, cache control 

and context switching code.  

Data Memory Barrier (DMB) 

The basic functionality of a DMB is as follows:  

It prevents reordering of data accesses instructions across itself. All data accesses by this 

processor/core before the DMB will be visible to all other masters within the specified 

shareability domain before any of the data accesses after it. It also ensures that any explicit 

preceding data (or unified) cache maintenance operations have completed before any subsequent 

data accesses are executed.  

The DMB instruction takes two optional parameters: an operation type (stores only - 'ST' - or 

loads and stores) and a domain. The default operation type is loads and stores and the default 

domain is System. So, in effect DMB is shorthand for DMB SY. All possible combinations of types 

and domains are legal operations on any processor, even if it does not implement the specific 

functionality described, and can be substituted internally for any stronger barrier.  

In the Linux kernel, the DMB instruction is used for the smp_*mb() macros.  

Data Synchronization Barrier (DSB) 

The Data Synchronization Barrier enforces the same ordering as the Data Memory Barrier, but it 

also blocks execution of any further instructions until synchronization is complete. It also waits 

until all cache and branch predictor maintenance operations have completed for the specified 

shareability domain. If the access type is load and store then it also waits for any TLB 

maintenance operations to complete.  

In the Linux kernel, the DSB instruction is used for the *mb() macros.  
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Shareability domains 

The ordering of memory accesses in the ARM architecture takes place within what is called a 

Shareability domain. Shareability domains define "zones" within the bus topology within which 

memory accesses are to be kept consistent (taking place in a predictable way) and potentially 

coherent (with hardware support). Outside of this domain, observers might not see the same 

order of memory accesses as inside it. 

The following table shows the different shareability options available in an ARMv7-A system:  

Domain Abbreviation Description 

Non-

shareable 
NSH 

A domain consisting only of the local agent. Accesses that never need 

to be syncronized with other cores, processors or devices. Not 

normally used in SMP systems.  

Inner 

Shareable 
ISH 

A domain (potentially) shared by multiple agents, but usually not all 

agents in the system.  

A system can have multiple Inner Shareable domains. An operation 

that affects one Inner Shareable domain does not affect other Inner 

Shareable domains in the system.  

Outer 

Shareable 
OSH 

A domain almost certainly shared by multiple agents, and quite likely 

consisting of several Inner Shareable domains. An operation that 

affects an Outer Shareable domain also implicitly affects all Inner 

Shareable domains within it (but does not otherwise behave as an 

Inner Shareable operation).  

For processors such as the Cortex-A15 MPCore that implement the 

LPAE, all Device memory accesses are considered Outer Shareable. 

For other processors, the shareability attribute can be explicitly set (to 

shareable or non-shareable).  

Devices within an Outer Shareable domain will normally be complex 

enough to have a concept of memory management and cache 

coherency (for example Mali graphics accelerators), although they 

might not be fully integrated in it.  

Full 

system 
SY 

An operation on the full system affects all agents in the system; all 

Non-shareable regions, all Inner Shareable regions and all Outer 

Shareable regions. Simple peripherals such as UARTs, and several 

more complex ones, are not normally necessary to have in a restricted 

shareability domain.  

 

ARMv6 architecture does not support a separate outer shareable domain.  

Shareability is effectively assigned to each memory transaction in the system, based on:  

 Memory attributes for the region accessed (determined by MMU translation tables)  

 Core configuration (can differ between cores within one multi-core processor)  

 Implementation of interconnect  
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 Integration between interconnect and the masters connected to it  

But there are also specific operations (instructions or cp15 configuration options) that can be 

performed with a domain defining their scope.  

The diagram below shows an example system and one way the shareability domains can be 

implemented. Here we have each individual execution unit within the MPCore clusters 

possessing their own internal Non-shareable domain. The two MPCore clusters have been 

configured to make up one inner-shareable domain. There is an outer-shareable domain holding 

graphics and video accelerators and graphics output as well as memory. And finally, anything 

not in this subsystem is simply part of the System domain.  

 

Barrier domains and levels 

Unless any additional parameters are specified, the barriers apply to the System domain. All 

barrier instructions can take a domain specifier, and it is architecturally defined that any 

unsupported specifier will be treated as if it specified System. The Data barriers can additionally 

take a separate parameter (ST for "store") to indicate that this barrier should only affect store 

accesses, and that loads can be freely reordered around them.  

For example, on a processor that does not distinguish between shareability domains DMB ISHST 

will execute simply as if it was DMB SY, whereas on one that does, it will be a lot more efficient.  



Example:  

 DMB OSST 

External caches 

With AMBA4 ACE 

The Cortex-A15 implements the AXI Coherency Extension, which makes barriers propagate 

through the interconnect. This makes it easy to maintain ordering within the ACE-aware portion 

of the system.  

Before AMBA4 ACE 

Before AMBA4 ACE, there was still a chance that bufferable memory transactions could be 

reordered in the external memory system even after barrier instructions had ensured that they left 

the Master interface in the correct order. On the ARM Versatile Express development platform 

with the 4xCortex-A9 module, accesses can be reordered in the level 2 cache controller. For 

example, a write to a DMA descriptor can be overtaken by a subsequent write to a control 

register to initiate the DMA transaction. This is resolved by the *mb() macros expanding to 

perform an explicit "outer sync" with the PL310 when CONFIG_ARM_DMA_MEM_BUFFERABLE is set 

in the kernel configuration file.  

Summary 

Memory access ordering is a complex topic, but hopefully this 3-part series has provided a useful 

introduction. For complete and proper information of the memory model of the ARM 

architecture and the ordering requirements (and tools) for the AMBA interconnect, please see the 

resources listed below.  
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