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Abstract— Reliability is vital for many embedded applications 

including industrial controllers and automotive electronics. 

There are many well-established techniques for creating 

reliable high-end control systems, and now these techniques 

are also appearing in small embedded systems including many 

microcontroller products based on ARM® processors. This 

whitepaper covers an overview of system design techniques 

and processor specific features that are commonly used in 

such applications including dual-core lock-step and the 

processor’s internal memory protection (e.g. parity, ECC), as 

well as system level enhancements like bus level timeout 

monitors and hardware monitoring units. The whitepaper also 

covers various areas that chip designers need to watch out for 

when developing their designs, such as how these features 

impact on system behavior. 
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I. BACKGROUND 

A. Scope of high reliability systems has expanded 

There is a wide range of embedded systems requiring high 

reliability. Traditionally, industrial controllers and automotive 

electronics are key areas of the electronics industry that 

demand high reliability.  Today, however, embedded systems 

are also deployed in medical equipment, smart building 

management, and other areas that have higher reliability 

requirements than traditional consumer electronics such as 

home appliances and entertainment systems. 

Technology trends like the Internet of Things (IoT) are also 

driving demand for improved reliability. With IoT, there are 

new implications for a range of electronic product designs.  

For example, a home broadband router built into the IoT 

infrastructure allows a fire alarm and a security system to be 

linked with a home owner’s smartphone and local emergency 

services. As a result, such home alarm systems and the IoT 

gateway must utilise a number of reliability features in order 

to ensure that the correct information is distributed. As a result 

of various IoT usage implications, embedded system designers 

are demanding more reliability feature support in the 

embedded systems underneath these products. 

Previously, the design for high reliability in System-on-Chip 

(SoC) products, including microcontrollers, was a very 

specialized topic. Today, as the demand for higher reliability 

has increased, many standard off-the-shelf microcontroller 

designs are built with enhanced system reliability.  As ARM 

Cortex®-M processors are used in many of the modern 

microcontroller products, this paper will also cover how ARM 

processors are designed to enable better system reliability. 
 

B. Typical requirements of a high reliability system 

In general, we can generalize the technical requirements for 

high reliability systems into several key areas: 

1) Reducing the possibility of errors. 

2) Detection of errors. 

3) Support correction of errors. 

4) Robustness – a single point of failure should not be 

able to manifest into a complete system failure. 

Depending on the application, these requirements may be 

optional. Memory error detection and correction, for example, 

typically requires error-correcting code (ECC) support, an 

uncommon feature in low-cost microcontroller products. 

C. Common sources of system failures 

Before we look into enhancing system reliability, we must 

first look at what can go wrong.  In most SoCs with embedded 



processors, the causes of failures can be classified into the 

following categories: 

 Memory: This is the most common concern for SoC 

designers. As memory density gets higher and higher, 

the energy required to toggle a memory bit is 

reduced, and therefore accidental changing of 

memory states can be triggered easily by various 

scenarios like a transient pulse in power wire or 

signal connections, electrostatic discharge, a hit by a 

radiation particle or even interference from nearby 

RF transmitter.  

 Logic: This is a less common cause as modern chip 

design tools provide very good signal integrity 

checking, and most hardware failure can be detected 

by manufacturing tests (e.g. a scan test). However, 

logic failure can still be caused by electron 

migrations and transient pulses in a power supply or 

signal connections. 

 Software: This is possibly the most common cause of 

system failures in finished products. Common 

mistakes like inadequate checking of external inputs, 

incorrect setup for stack and heap memory size or 

simple programming bugs can all result in different 

types of system failure. 

 

At the system level, there can be additional factors to consider: 

 The chip packaging can be an important factor for 

applications that need to endure mechanical shocks 

and vibration. 

 PCB design and physical connectors can seriously 

affect the stability of the power supply and signal 

integrity. 

 

The rest of this paper will focus on what can be done at the 

SoC design level to prevent, detect and correct errors, and 

therefore these system level factors will not be covered in 

details. 

II. MEMORY PROTECTION 

A. Reducing risk of memory errors 

The first step in getting better memory reliability is by using 

the right memory macrocells.  For example, some SRAM has 

advanced built-in test features that can help detect faults and 

prevent field failures.  In SRAM and ROM IP products from 

ARM, the flexible margining features also enable chip 

designers to create memory systems with larger margining to 

enhance reliability (reference [1]).  

Many microcontrollers use embedded flash memories. Some 

of the embedded flash suppliers (e.g. Cypress SONOS 

embedded flash) are designed to support high reliability by 

providing extended lifetime in a wide temperature range 

(reference [2]), and reduce reliability concern using uniform 

tunnel erase (reference [3]).  

B. Parity and ECC 

In some embedded systems, the memory contents are 

protected with either parity bits or ECC bits. Parity bits require 

a smaller memory size overhead, and simpler computation 

hardware.  However, a parity bit cannot handle error 

correction and typically can only detect single bit errors. ECC 

can often support SECDED (Single-bit Error Correction, 

Double-bit Error Detection). However, it requires more 

memory overhead and more complex computation. 

For systems with high reliability requirements, ECC is 

generally preferred over parity due to its ability to correct 

single bit errors and detect multi-bit errors. 

In many systems, each 32bits of data has a 7-bit ECC 

overhead, and each 64bits of data has an 8-bit ECC overhead.  

For a parity scheme, however, a designer can choose 1parity 

bit per byte, 1parity bit per 32bits of data or even 1 parity bit 

per 64bits of data, although this can affect the ability to detect 

errors.  For cache memories, additional ECC overhead would 

be required for cache tag memory. 

In order for memory errors to be handled, the processor in use 

must provide a suitable interface.  For example, the TCM 

(Tightly Couple Memory) interface of the ARM Cortex-M7 

processor (reference [4]) provides the essential signals for 

ECC error handling (figure 1). 
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Fig. 1. Connections between the TCM interface of the Cortex-M7 processor 

and the TCM. 

 If an ECC error is detected, the ECC computation 

logic can signal to the processor that the read 

operation needs to be retried (a retry signal). If the 
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error can be corrected, the corrected data is 

forwarded to the processor, and can also be written 

back to the SRAM at the same time.  

 If the ECC error cannot be corrected (a multi-bit 

error), then the ECC computation logic can send an 

error status back to the processor to indicate a fault 

(an error signal). In this case, a fault exception could 

be triggered on the Cortex-M7 processor and the 

error is dealt with inside the fault exception handler.  

Since the ECC computation takes time, the retry signal in the 

Cortex-M7 processor is one cycle behind the read data cycle. 

This enables ECC function without slowing down the memory 

clock speed. 

The cache memory system in the Cortex-M7 processor can 

also be protected by ECC.  This is a configurable option and 

the ECC is handled internally within the processor. 

In the ARM Cortex-M3 and Cortex-M4 processor, a signal is 

also available to allow ECC logic to signal to the processor so 

that an instruction fetch can be retried if an ECC error is 

detected. 

C. ECC feature implications 

While ECC is great for enabling data integrity, it has some 

implications. In addition to the memory size overhead, it can 

also cause performance reduction.  Because a processor can 

write data of different sizes to the memory (e.g. 8-bit, 16-bit, 

32-bit or 64-bit), and typically the ECC value is generated for 

the whole 32-bit word or 64-bit doubleword, a Read-Modify-

Write (RMW) sequence might be required to allow the ECC to 

be recomputed, unless the ECC code is on a per byte basis. 

In order to support this, the TCM interface of the Cortex-M7 

processor can be configured to enable the RMW sequence for 

each write operation that does not cover the whole 32bits or 

64bits of data. This is completely transparent to software, but 

it can result in extra clock cycles for some of the write 

operations. 

D. ECC initialization aspect 

When a system with ECC memory is powered up, the memory 

is likely to contain invalid ECC values. This means that the 

system may require additional initialization steps to avoid 

memory locations being speculatively read before they are 

initialized. This can trigger unnecessary retry sequences or 

even accidentally trigger a fault exception in some processor 

architectures.  

On the Cortex-M7 processor: 

 The ECC for the cache memory is initialized when it 

is being invalidated (part of the cache system 

initialization), so there is no additional software 

overhead to support cache ECC initialization. 

 The first write to each TCM word / doubleword / 

byte / halfword initializes the ECC for the whole 

word (for the data TCM) or doubleword (for the 

instruction TCM), so again, there is no additional 

software overhead. 

 

Due to the high performance nature of the Cortex-M7 

processor, speculative read operations can occur and this 

means an uninitialized TCM memory locations could be read 

by the processor speculatively. However, the TCM interfaces 

ignore the ECC retry/error if the read is speculative and if the 

read data ends up unused.  So as long as the software 

(including C runtime library code) does not read an 

uninitialized memory location, it should work just fine. 

However, one particular area that chip designers need to pay 

attention to is accesses from debuggers, as they can read 

memory locations that are uninitialized.  In the Cortex-M7 

processor, an additional TCM side band signal is available to 

allow ECC logic to ignore ECC errors caused by debugger 

accesses. This is not an issue for the cache because debug 

access would not happen to uninitialized cache locations. 

For other processors that cannot distinguish ECC errors 

caused by speculative reads or debug reads, or if you cannot 

guarantee the software does not read uninitialized memory 

locations, you might need to initialize the memory’s ECC 

before starting the application.  For example, the processor can 

initialize the memory by writing a constant (e.g. 0) to certain 

memory ranges to initialize the ECC values during the startup 

code execution.  The disadvantage is that, of course, it could 

take longer for the system to start up. 

ECC initialization can also affect unused memory locations in 

NVM (Non-Volatile Memory, e.g. flash).  For this situation 

the development tool chain can fill the unused program space 

with known values so that the whole NVM is programmed 

with valid ECC values. 

E. Error management features  

1) TCM 

The TCM ECC error handling depends on the design of ECC 

logic attached to the TCM interface.  Typically, the ECC 

calculation result is available one clock cycle after a data read 

operation.  As a result, the retry signal is designed in a way 

such that it should be asserted one clock cycle after the data 

read operation if an ECC error is detected.  The retry signal 

triggers the processor to retry the read operation, which by that 

time the ECC computation should have been able to calculate 

the corrected data, if the error is single bit. This corrected data 

can then be written back to the TCM memory location as 

convenient.  When the accesses is retired, the processor should 



hopefully then read the correct data.  However, the retry of the 

read access may be delayed if an interrupt occurs during the 

retry phase. (See figure 2).  
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Fig. 2. An example of TCM ECC error handling sequence 

If the TCM contains an uncorrectable ECC error, an error 

response is needed and the implementation could trigger a 

fault exception, or it could continually retry the access 

resulting in a “deadlock” situation so that the system does not 

do anything else. It could also generate an NMI, which could 

be the exception used to handle all safety related errors. In the 

Cortex-M7 processor, an uncorrectable error will trigger a 

fault exception. 

2) Caches 

The Cortex-M7 handles cache ECC errors automatically. If 

ECC is used and a correctable error is detected in a data read, 

the cache is cleaned and invalided (correcting the data on the 

fly), and the data is read back in a retry cycle.  

If an uncorrectable ECC error is detected, there are several 

ways to deal with it. 

 If the ECC error is in the instruction cache memory, 

the corrupted cache line can be discarded and the 

program is fetched from the main memory system 

again. 

 If the ECC error is in the data cache memory, the 

affected cache memory could be cleaned and 

invalidated 

a. If the cache line is clean (tag RAM is not 

corrupted and tag indicates that data is not 

dirty), the corrupted cache line can be 

discarded and the data is fetched from the 

main memory system again.   

b. If the ECC error is in the data cache 

memory, and the cached data is dirty, a fault 

exception would be needed.  

Additional cache error indication signals are available on the 

processor’s interface to indicate other ECC scenarios. 

The Cortex-M7 processor also has a couple of error bank 

registers for the instruction cache and data caches. These 

registers allow the cache line that suffered from an ECC 

failure to be locked down, preventing it from being used 

again. 

 

F. Memory BIST 

Majority of memory macros designed for high reliability 

systems support some forms of BIST (Built-in Self-Test) 

features.  Normally such BIST can be carried as part of 

manufacturing tests and as a part of device startup sequence. 

In order to support such feature, some processors such as 

ARM Cortex-M7 processor included MBIST interface for its 

cache memories.   

 

The Cortex-M7 processor also allows the RAMs to be tested 

using the MBIST interface during normal execution. This is 

known as online MBIST. 
 

III. PROTECTION AGAINST HARDWARE LOGIC ERRORS 

A. Reducing the risk of logic errors 

There are a number of ways to enhance the reliability of the 

logic hardware. Typically, in automotive applications, the 

logic cell libraries are only characterized for operation 

conditions with minimum risk of logic failure.  As a result, the 

same design using the same semiconductor process could run 

slower (e.g. with larger margin for timing), but can run with 

higher reliability (i.e. lower possibility of logic failure). 

In some cases, chip designers can also use special processes 

that are radiation-hardened (RAD–hardened) for specialized 

IC design (e.g. aviation electronics – which have a higher 

chance of being affected by cosmic ray and alpha particles). 

However, this is typically much more expensive than standard 

semiconductor processes. 

For other chip designers, it might be impossible to use either 

of these two methods. However, we can still improve the 

reliability of the system by: 

 Ensuring good floor planning and power rail design 

to reduce IR drop (internal power rail voltage drop). 

 Using EDA tools to ensure good signal integrity. 

 Enhancing the error detection features in the system. 
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Fortunately, the possibility of logic hardware failure is often 

much lower than memory failure. 

B. Logic error detection with Dual-Core Lock-Step 

In order to detect errors in logic during run-time, some 

embedded systems deploy two instantiations of the same 

processor, and compare the outputs as a way of detecting 

hardware errors. This is commonly known as dual-core lock-

step.  In such designs, the two processors starting with the 

same state (reset) and receive the same inputs (execute the 

same program), and therefore the outputs should be identical.  

If the outputs from the two processors mismatch, then we 

know that a logic failure has occurred and can be handled by a 

separated mechanism (with two cores, it is impossible to tell 

which one is correct). 

The Cortex-M7 processor supports dual-core lock-step 

configuration option. In this configuration, the core logic is 

instantiated twice, but the cache memory and TCM interface 

are shared because they can be protected by ECC which has a 

lower silicon area overhead (figure 3). Since the two processor 

cores’ logics execute the same program, it does not enhance 

the performance of the systems by having two processor cores.  
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Fig. 3. Dual-Core Lock-Step configuration in the Cortex-M7 processor 

When looking at the dual-core lock-step in more details, there 

is a way to enhance the error detection rate.  If the two core 

blocks are implemented in the same way and the failure is 

caused by a transient pulse on power or signal interface, it is 

possible to yield the same failure on both cores. In order to 

enhance the success rate to detect errors, the execution cycle 

of the two core logic blocks are actually offset by two clock 

cycles (See figure 4). If an error triggers a fault in one core, it 

is unlikely for it to happen to the second core in the same way, 

as it is less likely that they are doing the same operations.  
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Fig. 4. Delay elements used in dual-core lock-step to reduce risk of common 

mode failures. 

Of course, it means that the inputs to the redundant core logic 

needs to be delayed by two clock cycles, and the output from 

the main core logic needs to be delayed by two clock cycles to 

make the output matches. 

Another requirement of a dual-core lock-step is that both 

processors need to start up with the same state. As a result, we 

need to add one more feature to the processor – all the flip-

flops inside the processor need to be able to reset to a known 

state.  In processor designs, it is typically acceptable to have 

some flip-flops not having reset (e.g. registers for the register 

bank).  This arrangement reduces the silicon area as well as 

power, but for dual-core lock-step systems, this can cause 

false positives.  For example, the undefined initial value of a 

register in the register bank could propagate to the bus system 

as the system starts.  As a result, the Cortex-M7 processor 

supports a configuration option to reset all registers inside the 

core to ensure that the initial states of the two core logic 

blocks are identical. This is the default setting if dual-core 

lock-step configuration is implemented. 

The same ‘reset all registers’ option is available for other 

Cortex-M processors allowing designers to implement a dual-

core lock-step design with existing Cortex-M0/M0+/M3/M4 

processors.  In these processors, there is no special 

configuration option for dual-core lock-step as there is no 

memory block inside the processor, making the creation of 

dual-core lock-step systems fairly straight forward. 

C. Logic Error Detection with a hardware monitor unit 

In some SoC designs, duplicating the whole processor core 

logic is not suitable due to silicon size or power constraints.  

For the Cortex-M3 processor, Yogitech has designed their 

own third party technology called faultRobust.  

The “fRCPU_armcm3” (reference [4]) is a licensable IP 

developed by YogiTech which is designed to be tightly 

coupled to a Cortex-M3 processor configured with a special 

observation interface. This interface allows the fRCPU 



module to observe the internal operations of the Cortex-M3 

processor and flag up any unexpected operation results.  This 

monitor unit is much smaller than the extra hardware required 

for a full dual-core lock-step arrangement. 

Failure Mode and Effect Analysis (FMEA) has been carried 

out by YogiTech to ensure that the fault coverage of the 

fRCPU can reach over 99%, and this helps products based on 

this technology to be certified to the IEC61508 SIL3 standard. 

IV. PROTECTION AGAINST SOFTWARE FAILURES 

A. What can we do at software level? 

There can be many causes for software related failures. The 

majority of them are simply bugs in software components, 

such as inadequate validation of external inputs, poor software 

design that leads to race conditions, or in some cases, a failure 

to reserve enough memory for stack or heap memories.  

There are also failure conditions that a software designer 

cannot have foreseen. For example, if an internet connected 

device is attacked via DoS (Denial of Service), or if it 

suddenly receives unexpectedly high amounts of input 

packets, a system could fail due to performance or memory 

size limitations. Potentially, a significant performance margin 

or memory size margin is required. 

Since Cortex-M programming requires no or very little tool 

chain specific extensions, you can use most of the existing 

code analysis tools for quality checks (e.g. MISRA-C 

compliance tests, formal code analysis tests). 

For some of these cases, the software bugs can be avoided 

with sufficient testing and coding quality checks, but it is not 

uncommon for some of these potential issues to remain 

undetected for a long period of time.  Fortunately, additional 

protection can be implemented at software level to reduce the 

severity of the failures, by preventing a single failure from 

manifesting into a complete system failure, for example. 

In some cases, certain data processes can be repeated, 

potentially using different algorithms, to verify the 

consistency of the data processing result. However, this 

verification technique can only protect the data processing 

part. Many of the software operations cannot be protected in 

such an arrangement. 

B. Stack protection 

Stack overflow is a common cause of failure in many 

embedded systems, typically caused by over optimistic stack 

memory allocation, and in some other cases, software bugs 

that result in stack leaks.  Obviously software designers need 

to obtain a correct estimation of required stack size, including 

stack memory used by the application code and exception 

handlers. Once the required stack size is established, there are 

several ways to implement stack protection: 

 

I. Using the Memory Protection Unit (MPU) – The 

MPU is an optional component for most of the 

Cortex-M processors and this feature should be 

included for SoC products that might be used in 

applications that require high reliability.  Software 

developers can use the MPU to define memory 

regions for program code, data, stack, peripherals, 

etc. If the processor tries to access a memory location 

not defined with a valid MPU region, a fault 

exception is triggered.  This method can be used with 

bare-metal systems (no embedded OS) or systems 

with an RTOS that supports an MPU.  If the stack 

memory access goes beyond a certain memory space, 

a fault exception would be triggered and remedy 

actions could be taken (e.g. terminating an offending 

task and restarting it). 

II. Using stack checking features in embedded OS / 

RTOS – many operating systems have optional stack 

limit checking functionality and this can be very 

useful for systems that require high reliability.  The 

only limitation is that checks usually only take place 

during context switching and therefore a stack 

overflow might not be detected or prevented. 

III. Separating the application’s program stack and 

exception handler stack, and creating a hard limit 

on the application’s stack usage – Cortex-M 

processors have two stack pointers to support 

efficient OS operations. However, for embedded 

systems without an OS, it is still possible to utilize 

this feature so that the exception handler’s stack is 

separated from the application code stack.  In these 

cases, you can place the application program’s stack 

at the bottom of valid RAM space so that a stack 

overflow would trigger a fault exception. The 

exception handlers (including the fault exception 

triggered, and other interrupt handlers) that use the 

handler’s stack can still execute and carry out fault 

handling actions. 

C. Fault exception handlers 

In many cases of Cortex-M based embedded systems going 

wrong, fault exceptions are triggered. Situations causing 

embedded systems to go wrong typically include: 

 Execution of undefined instructions (e.g. flash 

memory corruption). 

 Attempting to access invalid memory locations (e.g. 

stack overflow) 

 Violation of access permissions defined by the MPU 

or default permission settings (e.g. attempted attack 

from hacking activities). 

 System integrity check failures (e.g. exception return 

to thread state when there are still active 

interrupt/exception. This type of checking is available 
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for processors based on the ARMv7-M architecture, 

including Cortex-M3, Cortex-M4 and Cortex-M7 

processors.) 

 Incorrect data address alignment (e.g. all unaligned 

data accesses for Cortex-M0 and Cortex-M0+ 

processors and unaligned data accesses in multiple 

load/store instructions in ARMv7-M processors). 

 Optionally, a divide by zero operation (software can 

setup a control register to enable/disable a fault 

exception for this condition). 

 Optionally, ECC errors that are not correctable on a 

Cortex-M7 processor (if the ECC feature is 

implemented and enabled). 

For ARMv6-M architecture (Cortex-M0 and Cortex-M0+ 

processors), all fault exceptions trigger the HardFault 

exception handler.  This has higher priority than other 

interrupts and system exceptions, apart from the Non-

Maskable Interrupt (NMI).  For ARMv7-M processors (e.g. 

Cortex-M3, Cortex-M4 and Cortex-M7 processors), there are 

three more configurable exceptions that can be programmed to 

enable separate handling of BusFault (e.g invalid memory 

locations), UsageFault (e.g. invalid instructions), and 

MemManage (Memory Management Fault for MPU 

permission violations).  In addition, ARMv7-M architecture 

also adds a number of fault status registers and other registers 

to help analyse causes of fault exceptions. 

Software developers can utilize the fault exception to: 

 Handle remedy actions when the system goes wrong. 

 Report errors to the users or the system or other 

systems connected to it. 

 Optionally perform a self reset if needed. 

Care should be taken in creating fault exception handlers.  For 

example, the fault could have been caused by issue with the 

stack (stack pointer pointing to an invalid memory location) 

and therefore the BusFault, MemManage and HardFault 

exception handlers should check the Main Stack Pointer 

(MSP) is pointing to a valid memory space before attempting 

to perform additional stack operations. 

D. Built-in Self Test software 

Software developers can add Built-in Self-Test features in 

their software.  Typically, such self-test operations can be 

carried out as the system started. Runtime test library (fRSTL 

Software Test Libraries, reference [6]) for Cortex-M 

processors is also available from YogiTech. 

The fRSTL is a set of software components that can be 

integrated into application code for detection of hardware 

failures.  The fault coverage has been verified by means of 

intensive fault injection simulations.  It can be used on 

standard off-the-shelf microcontroller products. A generic 

version of the fRSTL called fRSTL_arm is available that 

focuses on the testing of the processor, and an MCU vendor 

specific version of the fRSTL called fRSTM32 that covers the 

whole microcontroller (the test library covers the testing of 

peripherals, memory systems of the STM32 microcontroller, 

not just the processor) has been developed for 

STMicroelectronics’s STM32 product range. The libraries can 

be used to target applications that requires SIL2 (IEC 61508 

Safety Integrity Level) or SIL3. 

V. OTHER SYSTEM LEVEL PROTECTION 

A. System Design for reliability 

There are a number of system level protection components 

that SoC designers can integrate in their chip design.  For 

example, a watchdog timer and brown out detector can be 

used to generate a NMI (Non-Maskable Interrupt) and reset 

requests. 

In order to prevent a single bus slave from locking up a system 

completely, bus timeout monitoring units can be added to the 

bus system.  For example, in the ARM Cortex-M System 

Design Kit (CMSDK) there is an AHB timeout monitor and an 

APB timeout monitor.  These monitor components can be 

placed between the bus interface of bus slaves and the rest of 

the bus interconnect.  If a bus slave is dysfunctional (asserting 

too many wait states when being accessed), the monitor can 

trigger a timeout and return an error response to the bus master 

(e.g. the Cortex-M processor) and the fault handler can then 

optionally reset the failed peripheral or carry out other remedy 

actions.  In these monitoring units, the number of clock cycles 

to trigger the time out is configurable. 

In many applications that need to operate over a wide 

temperature range, the choice of embedded flash memory, 

SRAM, oscillators and voltage reference can also be crucial.  

You can also integrate temperature sensors in the system and 

trigger an alert/interrupt if the temperature range is beyond the 

acceptable range. 

B. Automatic reset 

The Cortex-M processor has a LOCKUP status output signal 

that can be optionally used to reset the system automatically if 

a LOCKUP state is reached (LOCKUP state can occur for 

different reasons, e.g., a result from a fault event inside 

HardFault or NMI handlers).  An automatic reset feature 

should be programmable, and should be disabled during 

software development to enable easier debugging of program 

failures. 

C. Auxiliary Fault 

Some hardware failures can come from other components on 

the chip.  On the Cortex-M3 and Cortex-M4 processors there 

is an Auxiliary Fault status input and an Auxiliary Fault Status 



Register.  Chip designers can connect these additional failure 

status signals to the Auxiliary Fault status input and also use 

one of the interrupt inputs to handle these failure events. 

VI. OTHER CONSIDERATIONS 

A. Certification requirements 

Certification for functional safety is a complex topic that 

cannot be fully covered in this document. It is worth noting, 

however, that ARM is working on various Safety 

Documentation packages for ARM processors. These are 

designed to help SoC designers to get their SoC products 

certified to a specific standard (e.g. ISO26262).  A 

documentation package is also available for the Cortex-R5 

processor and a range of Cortex-M processors. 

B. On chip firmware 

Many SoC or microcontrollers contain on-chip firmware.  As 

a result, when creating these firmwares for high reliability 

systems, the software components and toolchains being used 

should also be considered. 

1) Tool chains 

A number of development suites are certified for use in safety 

related development.  For example, both ARM Compiler 

(shipped with Keil MDK and ARM DS-5, reference [7]) and 

the IAR Embedded Workbench for ARM (reference [7]) have 

been certified by TÜV SÜD.  In addition, ARM Compiler also 

has a Qualification Kit package available to help the 

certification process (reference [7]). 

2) Middleware 

A number of RTOSes are designed to support applications 

with functional safety requirements.  For example, a number 

of RTOSes for ARM Cortex-M processors have been certified 

for safety-critical applications (e.g. ThreadX, FreeRTOS-MPU 

and a number of other RTOSes have been certified by SGS- 

TÜV). 

VII. CONCLUSIONS 

The design of high reliability SoC products requires many 

areas to be specially handled. For example, on the hardware 

side the memory as well as the logic might need special 

arrangements like memory ECC and dual-core lock-step 

feature. On the software side there is also a need to protect the 

system against common software failures and handling of 

various error cases. Fortunately, a number of features on the 

Cortex-M processors are available to help designers to create 

SoC products that can reduce risk of failure, or to enable 

errors to be detected quickly and to be handled such as by 

fault exception handlers. 

There are also various other IP solutions available to enable 

better reliability at system level, as well as software product 

solution for enable high quality software development for 

safety critical systems. 
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