
www.embedded-world.eu

Design of SoC for High Reliability Systems with

Embedded Processors

Joseph Yiu

Senior Embedded Technology Manager

CPU Product Group, ARM

Cambridge, United Kingdom

Abstract— Reliability is vital for many embedded applications

including industrial controllers and automotive electronics.

There are many well-established techniques for creating

reliable high-end control systems, and now these techniques

are also appearing in small embedded systems including many

microcontroller products based on ARM® processors. This

whitepaper covers an overview of system design techniques

and processor specific features that are commonly used in

such applications including dual-core lock-step and the

processor’s internal memory protection (e.g. parity, ECC), as

well as system level enhancements like bus level timeout

monitors and hardware monitoring units. The whitepaper also

covers various areas that chip designers need to watch out for

when developing their designs, such as how these features

impact on system behavior.

Keywords— Processors, reliability, safety, ECC, Cortex-M7

I. BACKGROUND

A. Scope of high reliability systems has expanded

There is a wide range of embedded systems requiring high

reliability. Traditionally, industrial controllers and automotive

electronics are key areas of the electronics industry that

demand high reliability. Today, however, embedded systems

are also deployed in medical equipment, smart building

management, and other areas that have higher reliability

requirements than traditional consumer electronics such as

home appliances and entertainment systems.

Technology trends like the Internet of Things (IoT) are also

driving demand for improved reliability. With IoT, there are

new implications for a range of electronic product designs.

For example, a home broadband router built into the IoT

infrastructure allows a fire alarm and a security system to be

linked with a home owner’s smartphone and local emergency

services. As a result, such home alarm systems and the IoT

gateway must utilise a number of reliability features in order

to ensure that the correct information is distributed. As a result

of various IoT usage implications, embedded system designers

are demanding more reliability feature support in the

embedded systems underneath these products.

Previously, the design for high reliability in System-on-Chip

(SoC) products, including microcontrollers, was a very

specialized topic. Today, as the demand for higher reliability

has increased, many standard off-the-shelf microcontroller

designs are built with enhanced system reliability. As ARM

Cortex®-M processors are used in many of the modern

microcontroller products, this paper will also cover how ARM

processors are designed to enable better system reliability.

B. Typical requirements of a high reliability system

In general, we can generalize the technical requirements for

high reliability systems into several key areas:

1) Reducing the possibility of errors.

2) Detection of errors.

3) Support correction of errors.

4) Robustness – a single point of failure should not be

able to manifest into a complete system failure.

Depending on the application, these requirements may be

optional. Memory error detection and correction, for example,

typically requires error-correcting code (ECC) support, an

uncommon feature in low-cost microcontroller products.

C. Common sources of system failures

Before we look into enhancing system reliability, we must

first look at what can go wrong. In most SoCs with embedded

processors, the causes of failures can be classified into the

following categories:

 Memory: This is the most common concern for SoC

designers. As memory density gets higher and higher,

the energy required to toggle a memory bit is

reduced, and therefore accidental changing of

memory states can be triggered easily by various

scenarios like a transient pulse in power wire or

signal connections, electrostatic discharge, a hit by a

radiation particle or even interference from nearby

RF transmitter.

 Logic: This is a less common cause as modern chip

design tools provide very good signal integrity

checking, and most hardware failure can be detected

by manufacturing tests (e.g. a scan test). However,

logic failure can still be caused by electron

migrations and transient pulses in a power supply or

signal connections.

 Software: This is possibly the most common cause of

system failures in finished products. Common

mistakes like inadequate checking of external inputs,

incorrect setup for stack and heap memory size or

simple programming bugs can all result in different

types of system failure.

At the system level, there can be additional factors to consider:

 The chip packaging can be an important factor for

applications that need to endure mechanical shocks

and vibration.

 PCB design and physical connectors can seriously

affect the stability of the power supply and signal

integrity.

The rest of this paper will focus on what can be done at the

SoC design level to prevent, detect and correct errors, and

therefore these system level factors will not be covered in

details.

II. MEMORY PROTECTION

A. Reducing risk of memory errors

The first step in getting better memory reliability is by using

the right memory macrocells. For example, some SRAM has

advanced built-in test features that can help detect faults and

prevent field failures. In SRAM and ROM IP products from

ARM, the flexible margining features also enable chip

designers to create memory systems with larger margining to

enhance reliability (reference [1]).

Many microcontrollers use embedded flash memories. Some

of the embedded flash suppliers (e.g. Cypress SONOS

embedded flash) are designed to support high reliability by

providing extended lifetime in a wide temperature range

(reference [2]), and reduce reliability concern using uniform

tunnel erase (reference [3]).

B. Parity and ECC

In some embedded systems, the memory contents are

protected with either parity bits or ECC bits. Parity bits require

a smaller memory size overhead, and simpler computation

hardware. However, a parity bit cannot handle error

correction and typically can only detect single bit errors. ECC

can often support SECDED (Single-bit Error Correction,

Double-bit Error Detection). However, it requires more

memory overhead and more complex computation.

For systems with high reliability requirements, ECC is

generally preferred over parity due to its ability to correct

single bit errors and detect multi-bit errors.

In many systems, each 32bits of data has a 7-bit ECC

overhead, and each 64bits of data has an 8-bit ECC overhead.

For a parity scheme, however, a designer can choose 1parity

bit per byte, 1parity bit per 32bits of data or even 1 parity bit

per 64bits of data, although this can affect the ability to detect

errors. For cache memories, additional ECC overhead would

be required for cache tag memory.

In order for memory errors to be handled, the processor in use

must provide a suitable interface. For example, the TCM

(Tightly Couple Memory) interface of the ARM Cortex-M7

processor (reference [4]) provides the essential signals for

ECC error handling (figure 1).

Cortex-M7

processor
Address

ECC logic

Control

Write Data Write Data

ECC

Read Data

ECC

Read Data

Retry

Error

SRAM

with ECC

TCM interface

Fig. 1. Connections between the TCM interface of the Cortex-M7 processor

and the TCM.

 If an ECC error is detected, the ECC computation

logic can signal to the processor that the read

operation needs to be retried (a retry signal). If the

www.embedded-world.eu

error can be corrected, the corrected data is

forwarded to the processor, and can also be written

back to the SRAM at the same time.

 If the ECC error cannot be corrected (a multi-bit

error), then the ECC computation logic can send an

error status back to the processor to indicate a fault

(an error signal). In this case, a fault exception could

be triggered on the Cortex-M7 processor and the

error is dealt with inside the fault exception handler.

Since the ECC computation takes time, the retry signal in the

Cortex-M7 processor is one cycle behind the read data cycle.

This enables ECC function without slowing down the memory

clock speed.

The cache memory system in the Cortex-M7 processor can

also be protected by ECC. This is a configurable option and

the ECC is handled internally within the processor.

In the ARM Cortex-M3 and Cortex-M4 processor, a signal is

also available to allow ECC logic to signal to the processor so

that an instruction fetch can be retried if an ECC error is

detected.

C. ECC feature implications

While ECC is great for enabling data integrity, it has some

implications. In addition to the memory size overhead, it can

also cause performance reduction. Because a processor can

write data of different sizes to the memory (e.g. 8-bit, 16-bit,

32-bit or 64-bit), and typically the ECC value is generated for

the whole 32-bit word or 64-bit doubleword, a Read-Modify-

Write (RMW) sequence might be required to allow the ECC to

be recomputed, unless the ECC code is on a per byte basis.

In order to support this, the TCM interface of the Cortex-M7

processor can be configured to enable the RMW sequence for

each write operation that does not cover the whole 32bits or

64bits of data. This is completely transparent to software, but

it can result in extra clock cycles for some of the write

operations.

D. ECC initialization aspect

When a system with ECC memory is powered up, the memory

is likely to contain invalid ECC values. This means that the

system may require additional initialization steps to avoid

memory locations being speculatively read before they are

initialized. This can trigger unnecessary retry sequences or

even accidentally trigger a fault exception in some processor

architectures.

On the Cortex-M7 processor:

 The ECC for the cache memory is initialized when it

is being invalidated (part of the cache system

initialization), so there is no additional software

overhead to support cache ECC initialization.

 The first write to each TCM word / doubleword /

byte / halfword initializes the ECC for the whole

word (for the data TCM) or doubleword (for the

instruction TCM), so again, there is no additional

software overhead.

Due to the high performance nature of the Cortex-M7

processor, speculative read operations can occur and this

means an uninitialized TCM memory locations could be read

by the processor speculatively. However, the TCM interfaces

ignore the ECC retry/error if the read is speculative and if the

read data ends up unused. So as long as the software

(including C runtime library code) does not read an

uninitialized memory location, it should work just fine.

However, one particular area that chip designers need to pay

attention to is accesses from debuggers, as they can read

memory locations that are uninitialized. In the Cortex-M7

processor, an additional TCM side band signal is available to

allow ECC logic to ignore ECC errors caused by debugger

accesses. This is not an issue for the cache because debug

access would not happen to uninitialized cache locations.

For other processors that cannot distinguish ECC errors

caused by speculative reads or debug reads, or if you cannot

guarantee the software does not read uninitialized memory

locations, you might need to initialize the memory’s ECC

before starting the application. For example, the processor can

initialize the memory by writing a constant (e.g. 0) to certain

memory ranges to initialize the ECC values during the startup

code execution. The disadvantage is that, of course, it could

take longer for the system to start up.

ECC initialization can also affect unused memory locations in

NVM (Non-Volatile Memory, e.g. flash). For this situation

the development tool chain can fill the unused program space

with known values so that the whole NVM is programmed

with valid ECC values.

E. Error management features

1) TCM

The TCM ECC error handling depends on the design of ECC

logic attached to the TCM interface. Typically, the ECC

calculation result is available one clock cycle after a data read

operation. As a result, the retry signal is designed in a way

such that it should be asserted one clock cycle after the data

read operation if an ECC error is detected. The retry signal

triggers the processor to retry the read operation, which by that

time the ECC computation should have been able to calculate

the corrected data, if the error is single bit. This corrected data

can then be written back to the TCM memory location as

convenient. When the accesses is retired, the processor should

hopefully then read the correct data. However, the retry of the

read access may be delayed if an interrupt occurs during the

retry phase. (See figure 2).

CPU issue

TCM read

CPU read TCM data

ECC compute Assert Retry

ECC

error?

Compute

corrected

data

CPU issue TCM read

CPU read TCM data
Corrected data write

back to TCM Assert

Error

Error

uncorrectable?

Timing gap might

occur (e.g. IRQ

occurred)

Fault

exception

Clock

edge

Clock

edge

Clock

edge

Clock

edge

Clock

edge

Fig. 2. An example of TCM ECC error handling sequence

If the TCM contains an uncorrectable ECC error, an error

response is needed and the implementation could trigger a

fault exception, or it could continually retry the access

resulting in a “deadlock” situation so that the system does not

do anything else. It could also generate an NMI, which could

be the exception used to handle all safety related errors. In the

Cortex-M7 processor, an uncorrectable error will trigger a

fault exception.

2) Caches

The Cortex-M7 handles cache ECC errors automatically. If

ECC is used and a correctable error is detected in a data read,

the cache is cleaned and invalided (correcting the data on the

fly), and the data is read back in a retry cycle.

If an uncorrectable ECC error is detected, there are several

ways to deal with it.

 If the ECC error is in the instruction cache memory,

the corrupted cache line can be discarded and the

program is fetched from the main memory system

again.

 If the ECC error is in the data cache memory, the

affected cache memory could be cleaned and

invalidated

a. If the cache line is clean (tag RAM is not

corrupted and tag indicates that data is not

dirty), the corrupted cache line can be

discarded and the data is fetched from the

main memory system again.

b. If the ECC error is in the data cache

memory, and the cached data is dirty, a fault

exception would be needed.

Additional cache error indication signals are available on the

processor’s interface to indicate other ECC scenarios.

The Cortex-M7 processor also has a couple of error bank

registers for the instruction cache and data caches. These

registers allow the cache line that suffered from an ECC

failure to be locked down, preventing it from being used

again.

F. Memory BIST

Majority of memory macros designed for high reliability

systems support some forms of BIST (Built-in Self-Test)

features. Normally such BIST can be carried as part of

manufacturing tests and as a part of device startup sequence.

In order to support such feature, some processors such as

ARM Cortex-M7 processor included MBIST interface for its

cache memories.

The Cortex-M7 processor also allows the RAMs to be tested

using the MBIST interface during normal execution. This is

known as online MBIST.

III. PROTECTION AGAINST HARDWARE LOGIC ERRORS

A. Reducing the risk of logic errors

There are a number of ways to enhance the reliability of the

logic hardware. Typically, in automotive applications, the

logic cell libraries are only characterized for operation

conditions with minimum risk of logic failure. As a result, the

same design using the same semiconductor process could run

slower (e.g. with larger margin for timing), but can run with

higher reliability (i.e. lower possibility of logic failure).

In some cases, chip designers can also use special processes

that are radiation-hardened (RAD–hardened) for specialized

IC design (e.g. aviation electronics – which have a higher

chance of being affected by cosmic ray and alpha particles).

However, this is typically much more expensive than standard

semiconductor processes.

For other chip designers, it might be impossible to use either

of these two methods. However, we can still improve the

reliability of the system by:

 Ensuring good floor planning and power rail design

to reduce IR drop (internal power rail voltage drop).

 Using EDA tools to ensure good signal integrity.

 Enhancing the error detection features in the system.

www.embedded-world.eu

Fortunately, the possibility of logic hardware failure is often

much lower than memory failure.

B. Logic error detection with Dual-Core Lock-Step

In order to detect errors in logic during run-time, some

embedded systems deploy two instantiations of the same

processor, and compare the outputs as a way of detecting

hardware errors. This is commonly known as dual-core lock-

step. In such designs, the two processors starting with the

same state (reset) and receive the same inputs (execute the

same program), and therefore the outputs should be identical.

If the outputs from the two processors mismatch, then we

know that a logic failure has occurred and can be handled by a

separated mechanism (with two cores, it is impossible to tell

which one is correct).

The Cortex-M7 processor supports dual-core lock-step

configuration option. In this configuration, the core logic is

instantiated twice, but the cache memory and TCM interface

are shared because they can be protected by ECC which has a

lower silicon area overhead (figure 3). Since the two processor

cores’ logics execute the same program, it does not enhance

the performance of the systems by having two processor cores.

Cortex-M7

Cortex-M7

Core 1

Core 2

I-TCM

D0-TCM

D1-TCM

I-Cache

D-Cache

Comparison and synchronisation logic

Level 2

Memory

System

Peripherals

B
u

s
 s

y
s

te
m

Fig. 3. Dual-Core Lock-Step configuration in the Cortex-M7 processor

When looking at the dual-core lock-step in more details, there

is a way to enhance the error detection rate. If the two core

blocks are implemented in the same way and the failure is

caused by a transient pulse on power or signal interface, it is

possible to yield the same failure on both cores. In order to

enhance the success rate to detect errors, the execution cycle

of the two core logic blocks are actually offset by two clock

cycles (See figure 4). If an error triggers a fault in one core, it

is unlikely for it to happen to the second core in the same way,

as it is less likely that they are doing the same operations.

Cache RAMs

Main Logic

Main clock tree

Redundant Logic

Redundant clock tree

2 cycle

delay

3 cycle

delay

1 cycle delay Eq?

Comparators

Okay /

Error

Processor

Inputs

Processor

Outputs

Processor Level

Clock

Fig. 4. Delay elements used in dual-core lock-step to reduce risk of common

mode failures.

Of course, it means that the inputs to the redundant core logic

needs to be delayed by two clock cycles, and the output from

the main core logic needs to be delayed by two clock cycles to

make the output matches.

Another requirement of a dual-core lock-step is that both

processors need to start up with the same state. As a result, we

need to add one more feature to the processor – all the flip-

flops inside the processor need to be able to reset to a known

state. In processor designs, it is typically acceptable to have

some flip-flops not having reset (e.g. registers for the register

bank). This arrangement reduces the silicon area as well as

power, but for dual-core lock-step systems, this can cause

false positives. For example, the undefined initial value of a

register in the register bank could propagate to the bus system

as the system starts. As a result, the Cortex-M7 processor

supports a configuration option to reset all registers inside the

core to ensure that the initial states of the two core logic

blocks are identical. This is the default setting if dual-core

lock-step configuration is implemented.

The same ‘reset all registers’ option is available for other

Cortex-M processors allowing designers to implement a dual-

core lock-step design with existing Cortex-M0/M0+/M3/M4

processors. In these processors, there is no special

configuration option for dual-core lock-step as there is no

memory block inside the processor, making the creation of

dual-core lock-step systems fairly straight forward.

C. Logic Error Detection with a hardware monitor unit

In some SoC designs, duplicating the whole processor core

logic is not suitable due to silicon size or power constraints.

For the Cortex-M3 processor, Yogitech has designed their

own third party technology called faultRobust.

The “fRCPU_armcm3” (reference [4]) is a licensable IP

developed by YogiTech which is designed to be tightly

coupled to a Cortex-M3 processor configured with a special

observation interface. This interface allows the fRCPU

module to observe the internal operations of the Cortex-M3

processor and flag up any unexpected operation results. This

monitor unit is much smaller than the extra hardware required

for a full dual-core lock-step arrangement.

Failure Mode and Effect Analysis (FMEA) has been carried

out by YogiTech to ensure that the fault coverage of the

fRCPU can reach over 99%, and this helps products based on

this technology to be certified to the IEC61508 SIL3 standard.

IV. PROTECTION AGAINST SOFTWARE FAILURES

A. What can we do at software level?

There can be many causes for software related failures. The

majority of them are simply bugs in software components,

such as inadequate validation of external inputs, poor software

design that leads to race conditions, or in some cases, a failure

to reserve enough memory for stack or heap memories.

There are also failure conditions that a software designer

cannot have foreseen. For example, if an internet connected

device is attacked via DoS (Denial of Service), or if it

suddenly receives unexpectedly high amounts of input

packets, a system could fail due to performance or memory

size limitations. Potentially, a significant performance margin

or memory size margin is required.

Since Cortex-M programming requires no or very little tool

chain specific extensions, you can use most of the existing

code analysis tools for quality checks (e.g. MISRA-C

compliance tests, formal code analysis tests).

For some of these cases, the software bugs can be avoided

with sufficient testing and coding quality checks, but it is not

uncommon for some of these potential issues to remain

undetected for a long period of time. Fortunately, additional

protection can be implemented at software level to reduce the

severity of the failures, by preventing a single failure from

manifesting into a complete system failure, for example.

In some cases, certain data processes can be repeated,

potentially using different algorithms, to verify the

consistency of the data processing result. However, this

verification technique can only protect the data processing

part. Many of the software operations cannot be protected in

such an arrangement.

B. Stack protection

Stack overflow is a common cause of failure in many

embedded systems, typically caused by over optimistic stack

memory allocation, and in some other cases, software bugs

that result in stack leaks. Obviously software designers need

to obtain a correct estimation of required stack size, including

stack memory used by the application code and exception

handlers. Once the required stack size is established, there are

several ways to implement stack protection:

I. Using the Memory Protection Unit (MPU) – The

MPU is an optional component for most of the

Cortex-M processors and this feature should be

included for SoC products that might be used in

applications that require high reliability. Software

developers can use the MPU to define memory

regions for program code, data, stack, peripherals,

etc. If the processor tries to access a memory location

not defined with a valid MPU region, a fault

exception is triggered. This method can be used with

bare-metal systems (no embedded OS) or systems

with an RTOS that supports an MPU. If the stack

memory access goes beyond a certain memory space,

a fault exception would be triggered and remedy

actions could be taken (e.g. terminating an offending

task and restarting it).

II. Using stack checking features in embedded OS /

RTOS – many operating systems have optional stack

limit checking functionality and this can be very

useful for systems that require high reliability. The

only limitation is that checks usually only take place

during context switching and therefore a stack

overflow might not be detected or prevented.

III. Separating the application’s program stack and

exception handler stack, and creating a hard limit

on the application’s stack usage – Cortex-M

processors have two stack pointers to support

efficient OS operations. However, for embedded

systems without an OS, it is still possible to utilize

this feature so that the exception handler’s stack is

separated from the application code stack. In these

cases, you can place the application program’s stack

at the bottom of valid RAM space so that a stack

overflow would trigger a fault exception. The

exception handlers (including the fault exception

triggered, and other interrupt handlers) that use the

handler’s stack can still execute and carry out fault

handling actions.

C. Fault exception handlers

In many cases of Cortex-M based embedded systems going

wrong, fault exceptions are triggered. Situations causing

embedded systems to go wrong typically include:

 Execution of undefined instructions (e.g. flash

memory corruption).

 Attempting to access invalid memory locations (e.g.

stack overflow)

 Violation of access permissions defined by the MPU

or default permission settings (e.g. attempted attack

from hacking activities).

 System integrity check failures (e.g. exception return

to thread state when there are still active

interrupt/exception. This type of checking is available

www.embedded-world.eu

for processors based on the ARMv7-M architecture,

including Cortex-M3, Cortex-M4 and Cortex-M7

processors.)

 Incorrect data address alignment (e.g. all unaligned

data accesses for Cortex-M0 and Cortex-M0+

processors and unaligned data accesses in multiple

load/store instructions in ARMv7-M processors).

 Optionally, a divide by zero operation (software can

setup a control register to enable/disable a fault

exception for this condition).

 Optionally, ECC errors that are not correctable on a

Cortex-M7 processor (if the ECC feature is

implemented and enabled).

For ARMv6-M architecture (Cortex-M0 and Cortex-M0+

processors), all fault exceptions trigger the HardFault

exception handler. This has higher priority than other

interrupts and system exceptions, apart from the Non-

Maskable Interrupt (NMI). For ARMv7-M processors (e.g.

Cortex-M3, Cortex-M4 and Cortex-M7 processors), there are

three more configurable exceptions that can be programmed to

enable separate handling of BusFault (e.g invalid memory

locations), UsageFault (e.g. invalid instructions), and

MemManage (Memory Management Fault for MPU

permission violations). In addition, ARMv7-M architecture

also adds a number of fault status registers and other registers

to help analyse causes of fault exceptions.

Software developers can utilize the fault exception to:

 Handle remedy actions when the system goes wrong.

 Report errors to the users or the system or other

systems connected to it.

 Optionally perform a self reset if needed.

Care should be taken in creating fault exception handlers. For

example, the fault could have been caused by issue with the

stack (stack pointer pointing to an invalid memory location)

and therefore the BusFault, MemManage and HardFault

exception handlers should check the Main Stack Pointer

(MSP) is pointing to a valid memory space before attempting

to perform additional stack operations.

D. Built-in Self Test software

Software developers can add Built-in Self-Test features in

their software. Typically, such self-test operations can be

carried out as the system started. Runtime test library (fRSTL

Software Test Libraries, reference [6]) for Cortex-M

processors is also available from YogiTech.

The fRSTL is a set of software components that can be

integrated into application code for detection of hardware

failures. The fault coverage has been verified by means of

intensive fault injection simulations. It can be used on

standard off-the-shelf microcontroller products. A generic

version of the fRSTL called fRSTL_arm is available that

focuses on the testing of the processor, and an MCU vendor

specific version of the fRSTL called fRSTM32 that covers the

whole microcontroller (the test library covers the testing of

peripherals, memory systems of the STM32 microcontroller,

not just the processor) has been developed for

STMicroelectronics’s STM32 product range. The libraries can

be used to target applications that requires SIL2 (IEC 61508

Safety Integrity Level) or SIL3.

V. OTHER SYSTEM LEVEL PROTECTION

A. System Design for reliability

There are a number of system level protection components

that SoC designers can integrate in their chip design. For

example, a watchdog timer and brown out detector can be

used to generate a NMI (Non-Maskable Interrupt) and reset

requests.

In order to prevent a single bus slave from locking up a system

completely, bus timeout monitoring units can be added to the

bus system. For example, in the ARM Cortex-M System

Design Kit (CMSDK) there is an AHB timeout monitor and an

APB timeout monitor. These monitor components can be

placed between the bus interface of bus slaves and the rest of

the bus interconnect. If a bus slave is dysfunctional (asserting

too many wait states when being accessed), the monitor can

trigger a timeout and return an error response to the bus master

(e.g. the Cortex-M processor) and the fault handler can then

optionally reset the failed peripheral or carry out other remedy

actions. In these monitoring units, the number of clock cycles

to trigger the time out is configurable.

In many applications that need to operate over a wide

temperature range, the choice of embedded flash memory,

SRAM, oscillators and voltage reference can also be crucial.

You can also integrate temperature sensors in the system and

trigger an alert/interrupt if the temperature range is beyond the

acceptable range.

B. Automatic reset

The Cortex-M processor has a LOCKUP status output signal

that can be optionally used to reset the system automatically if

a LOCKUP state is reached (LOCKUP state can occur for

different reasons, e.g., a result from a fault event inside

HardFault or NMI handlers). An automatic reset feature

should be programmable, and should be disabled during

software development to enable easier debugging of program

failures.

C. Auxiliary Fault

Some hardware failures can come from other components on

the chip. On the Cortex-M3 and Cortex-M4 processors there

is an Auxiliary Fault status input and an Auxiliary Fault Status

Register. Chip designers can connect these additional failure

status signals to the Auxiliary Fault status input and also use

one of the interrupt inputs to handle these failure events.

VI. OTHER CONSIDERATIONS

A. Certification requirements

Certification for functional safety is a complex topic that

cannot be fully covered in this document. It is worth noting,

however, that ARM is working on various Safety

Documentation packages for ARM processors. These are

designed to help SoC designers to get their SoC products

certified to a specific standard (e.g. ISO26262). A

documentation package is also available for the Cortex-R5

processor and a range of Cortex-M processors.

B. On chip firmware

Many SoC or microcontrollers contain on-chip firmware. As

a result, when creating these firmwares for high reliability

systems, the software components and toolchains being used

should also be considered.

1) Tool chains

A number of development suites are certified for use in safety

related development. For example, both ARM Compiler

(shipped with Keil MDK and ARM DS-5, reference [7]) and

the IAR Embedded Workbench for ARM (reference [7]) have

been certified by TÜV SÜD. In addition, ARM Compiler also

has a Qualification Kit package available to help the

certification process (reference [7]).

2) Middleware

A number of RTOSes are designed to support applications

with functional safety requirements. For example, a number

of RTOSes for ARM Cortex-M processors have been certified

for safety-critical applications (e.g. ThreadX, FreeRTOS-MPU

and a number of other RTOSes have been certified by SGS-

TÜV).

VII. CONCLUSIONS

The design of high reliability SoC products requires many

areas to be specially handled. For example, on the hardware

side the memory as well as the logic might need special

arrangements like memory ECC and dual-core lock-step

feature. On the software side there is also a need to protect the

system against common software failures and handling of

various error cases. Fortunately, a number of features on the

Cortex-M processors are available to help designers to create

SoC products that can reduce risk of failure, or to enable

errors to be detected quickly and to be handled such as by

fault exception handlers.

There are also various other IP solutions available to enable

better reliability at system level, as well as software product

solution for enable high quality software development for

safety critical systems.

REFERENCES

[1] ARM Embedded SRAM and ROM IP

(http://www.arm.com/products/physical-ip/embedded-memory-
ip/sram.php, http://www.arm.com/products/physical-ip/embedded-
memory-ip/rom.php)

[2] Cypress SONOS Technology (http://www.cypress.com/?docID=45736)

[3] An Embedded 90nm SONOS Nonvolatile Memory Utilizing Hot
Electron Programming and Uniform Tunnel Erase
(https://www.freescale.com/files/technology_manufacturing/doc/IEDM_
2002_CRAIG_SWIFT_SONOS.pdf)

[4] ARM Cortex-M7 Processor
(http://www.arm.com/products/processors/cortex-m/cortex-m7-
processor.php)

[5] Enabling Increased Safety with Fault Robustness in Microcontroller
Applications
(http://www.arm.com/files/pdf/Enabling_Increased_Safety_with_Fault_
Robustness_in_MCU_Applications.pdf)

[6] Yogitech fRCPU (http://www.yogitech.com/en/frstl-0) Generic versions
for Cortex-M processors: http://www.yogitech.com/en/frstl-arm ,
STM32 specific version: http://www.yogitech.com/en/frstlstm32

[7] ARM Compiler Verification (www.arm.com/products/tools/software-
tools/mdk-arm/compilation-tools/compiler-verification.php)

[8] IAR Embedded Workbench certified for function safety development
(http://www.iar.com/About/Pressroom/Press-releases/2013/4/IAR-
Embedded-Workbench-certified-for-functional-safety-development/)

[9] ARM Compiler Qualification Kit (http://ds.arm.com/ds-5/build/arm-
compiler-qualification-kit/)

http://www.arm.com/products/physical-ip/embedded-memory-ip/sram.php
http://www.arm.com/products/physical-ip/embedded-memory-ip/sram.php
http://www.arm.com/products/physical-ip/embedded-memory-ip/rom.php
http://www.arm.com/products/physical-ip/embedded-memory-ip/rom.php
http://www.cypress.com/?docID=45736
https://www.freescale.com/files/technology_manufacturing/doc/IEDM_2002_CRAIG_SWIFT_SONOS.pdf
https://www.freescale.com/files/technology_manufacturing/doc/IEDM_2002_CRAIG_SWIFT_SONOS.pdf
http://www.arm.com/products/processors/cortex-m/cortex-m7-processor.php
http://www.arm.com/products/processors/cortex-m/cortex-m7-processor.php
http://www.arm.com/files/pdf/Enabling_Increased_Safety_with_Fault_Robustness_in_MCU_Applications.pdf
http://www.arm.com/files/pdf/Enabling_Increased_Safety_with_Fault_Robustness_in_MCU_Applications.pdf
http://www.yogitech.com/en/frstl-arm
http://www.yogitech.com/en/frstlstm32
http://www.arm.com/products/tools/software-tools/mdk-arm/compilation-tools/compiler-verification.php
http://www.arm.com/products/tools/software-tools/mdk-arm/compilation-tools/compiler-verification.php
http://www.iar.com/About/Pressroom/Press-releases/2013/4/IAR-Embedded-Workbench-certified-for-functional-safety-development/
http://www.iar.com/About/Pressroom/Press-releases/2013/4/IAR-Embedded-Workbench-certified-for-functional-safety-development/
http://ds.arm.com/ds-5/build/arm-compiler-qualification-kit/
http://ds.arm.com/ds-5/build/arm-compiler-qualification-kit/

