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Introduction 
Contemporary mobile platform SoCs impose intense traffic management demands on the memory subsystem. 
An intelligent memory controller design comprehends the fundamental memory streaming requirements of a 
mobile SoC and provides the necessary capabilities for optimal Quality of Service (QoS) while ensuring best 
use of available memory bandwidth. This paper describes some of the performance challenges for memory 
subsystems in an ARM®-based mobile SoC*. Memory controller features necessary for optimizing performance 
of mobile traffic are described along with their effects, using benchmarking data. Moreover, the combined effect 
of optimizing memory subsystem performance by closely integrating both the memory controller and the 
interconnect fabric is demonstrated.  
 
(*In the context of this paper, the word ‘mobile’ somewhat loosely refers to all types of systems that deploy 
LPDDR4/3 or DDR4/3n memories, ranging from smartphone, tablets, laptops/clamshells to systems in 
consumer and automotive devices.) 
 

 
ARM Mobile Subsystem Example 
Figure 1 shows a contemporary example of an ARM-based mobile subsystem. Typically, there are one or two 
clusters of Cortex®-A processors in big.LITTLETM configuration – with the ‘big’ CPUs handling the raw 
computational needs whereas the ‘LITTLE’ ones running the lighter threads for power efficiency. The CPUs 
seamlessly communicate data with each other over a Cache Coherent Interconnect, CoreLinkTM CCI-550, that 
provides a snoop filter for storing a directory of cached data, thereby reducing number of snoops required across 
CPU clusters. In addition to the CPUs, graphics, video and display computations are performed by the fully-
coherent MaliTM Mimir GPU and non-coherent V550 Video and DP650 Display processors in the system.  
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Figure 1: Example ARM-based mobile system 
 
As a side note, having a fully-coherent GPU enables Shared Virtual Memory between heterogeneous processing 
units – the CPU and the GPU – allowing memory pointers to be passed between these units for true 
heterogeneous processing. This in itself improves overall performance by enabling these powerful compute 
blocks to operate on the same block of memory down to the byte level. For further information on this topic, 
refer to whitepaper from Tirias Research:  http://www.tiriasresearch.com/downloads/arm-enables-
heterogeneous-computing-the-corelink-cci-550-and-dmc-500/  
 
GPUs and other coherent IO agents such as co-processors, camera streams, etc. share data with CPUs over the 
CoreLink CCI-550. In order to have the same view of physical memory as the CPUs, accesses by these agents 
are translated by a Memory Management Unit (MMU), which also optionally provides a Stage2 translation for 
supporting virtualization. The Video and Display agents communicate data over a non-coherent hybrid 
interconnect, CoreLink NIC-450, but are also subject to the same MMU translations seen by the IO coherent 
agents. MMU translation tables are stored in memory and cached locally to minimize the overhead of fetching 
the translations from memory for each agent communicating with memory. 
 
A complex system such as the one showed in Figure 1 would typically have a memory subsystem consisting of 
four to six channels of memory controllers, CoreLink DMC-500, connected to LPDDR4/3 memories via an 
external DFI-compatible PHY. At the maximum supported data transfer rate of LPDDR4-4266 Mbps, the 
maximum bandwidth to memory would thus be 51.2 GB/s using 6 channels of x16 memory. This memory data 
bandwidth is capable of supporting data-hungry devices such as advanced tablets and clamshells while 
continuing to support the extremely low power budgets that ARM is known for. 
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Traffic Optimization by Mobile Memory Subsystems 
Although the presence of a CCI in mobile SoCs reduces the number of accesses required to memory, the sheer 
number of active agents in the overall system results in high-bandwidth demand for memory data. For the 
purpose of this analysis, we make a common-scenario assumption that the agents can be collectively classified 
into 3 categories:  
 

1. Low Latency (LL) – the dominant characteristics of memory traffic coming from the CPUs are 
random, small size accesses (typically cache line fills) that are sporadic in nature. Key requirement for 
CPU accesses is low latency so as to provide maximum thread execution performance.  

2. Real Time (RT) – typically these agents are Video and Display units which need to access data from 
memory at a guaranteed rate so as to ensure the real time performance of the mobile device. Any 
interruptions in data access from memory could result in noticeable flickering in the display thereby 
rendering the device defective.  

3. High Bandwidth (HB) – the GPU and external co-processors are the best example of agents that require 
high bandwidth access to memory. In the absence of LL or RT traffic, HB traffic can easily consume 
the entire available bandwidth to memory.  

 
Note that it is not necessary for CPU traffic to always be low latency. Multi-modal latency requirements for 
CPU traffic are plausible but don’t necessarily change the discussions presented in this paper. 
 
By classifying key memory activity in a mobile SoC into the LL, RT and HB categories, the primary mobile 
memory subsystem optimization problem can be summed up as follows:  
 
“The memory controller needs to provide the lowest latency for LL agents while ensuring that RT agents get 
guaranteed rate of access to memory to meet real-time performance requirements – and do all this while 
ensuring that all remaining bandwidth after servicing LL and RT agents is available to the HB agents for 100% 
total memory bandwidth utilization.”  
 
 

ARM’s Memory Performance Optimization Techniques 
ARM has been delivering memory controller IP to its customers for several years now. Each new memory 
generation has resulted in a new controller micro-architecture to match increasing memory transfer speeds and 
supporting advanced features. Over the years, the various micro-architectural techniques have built on top of the 
base architecture to provide the best performance achievable with the ARM IP ecosystem.  
 
Prior to a deep dive into various techniques for achieving fine grain control over memory access requirements 
for different agents, it is necessary to benchmark the bandwidth utilization of the memory controller across a 
varying number of banks and sizes of accessed data. This is to ensure that the scheduler is robust enough for any 
system traffic scenario.  
 
Figure 2 shows a plot of the same. The red grid is the theoretical maximum utilization achievable for any 
memory controller assuming ideal operation with memory access timing restrictions imposed by standard 
JEDEC timing parameters.  The green heat map is the measured bandwidth utilization of CoreLink DMC-500. 
The measured utilization tracks the theoretical maximum very closely (>90% match). There are no local ‘hot 
spots’ indicating that the scheduler for this memory controller is flexible enough for handling the wide range of 
operating conditions with minimal bandwidth loss.  
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Figure 2: Measured Bandwidth Utilization VS Theoretical Maximum 
 
Building up further on this analysis is a description below of the various memory performance optimization 
techniques:  
 

1. QoS Arbitration – One of the simplest methods to provide Quality of Service for various agents trying 
to access memory is through priority arbitration whereby simultaneous incoming memory transactions 
get serviced based on assigned priorities for the respective agents. Figure 3 shows the effects of QoS 
arbitration for 2 types of systems. In non-congested systems, latency response to transactions at various 
priority levels is nearly identical through the range of transactions. Conversely, in congested systems, 
latency response is stretched out (longer latencies) for transactions from RT and HB agents whereas 
those from LL agents get a faster response.  

  

 
Figure 3: Effect of QoS Arbitration on Congested and Non-Congested System 

 
2. Priority Escalation – A system that remains congested for long periods of time runs the risk of starving 

execution of low priority transactions in favor of high priority ones. A well-designed QoS scheme must 
therefore provide a mechanism for priority escalation based on aging counters or programmable 
overrides. Figure 4 shows the effect of priority escalation in a congested system. Latency response for 

Congested System Non-Congested System 

Figure 3: Effect of QoS Arbitration on Congested and Non-Congested Systems 
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QoS level qv0, qv1, etc. which are lower priority transactions improves with escalation. Thus a system 
can be designed to provide an appropriate latency response across all transfers at various QoS levels.  
 

 
 

Figure 4: Effect of Priority Escalation in a Congested System 
 

3. Latency Deadline Scheduling – Whereas both QoS arbitration and priority escalation are good levers 
for managing latency responses for LL, RT and HB agents, they lack the fundamental requirement of 
timeout or deadline scheduling. This requirement is particularly necessary for RT agents where 
guaranteed response within a maximum number of cycles is necessary for proper operation of the 
mobile device, regardless of transaction activity occurring in the memory controller.  Figure 5 shows 
the effect of deadline scheduling on latency response of RT agents. In this scenario, a latency deadline 
of ‘D’ cycles has been programmed for the RT traffic. For latencies well below the deadline threshold, 
the LL transactions get higher priority and have a steeper latency response for nearly 95% of the LL 
transactions. Closer to the latency deadline, the latency response of RT agents picks up with 100% of 
the RT transactions completing before the deadline – ahead of the LL transactions.  

 
 

Figure 5: Effect of Latency Deadline Scheduling 
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Figure 4: Effect of Priority Escalation in a Congested System 

Figure 5: Effect of Latency Deadline Scheduling for RT Traffic 

Programmed Latency 
Deadline for RT Master 

Latency of LL Master Remains 
Lower Prior to RT Deadline 

D 

RT transactions overtake LL 
and complete before Deadline 



	  

Copyright © 2016 ARM Limited. All rights reserved. 
The ARM logo is a registered trademark of ARM Ltd.  

All other trademarks are the property of their respective owners and are acknowledged 
 

Optimizing Performance for an ARM Mobile Memory Subsystem Page 6 of 10  

4. Deadline Arbitration with Increasing Traffic – The techniques described above are now applied to an 
illustrative scenario to test the extreme limits. The traffic from LL and RT agents is continuously 
increased from 0 to 100% injection rates, while the HB agents are also sending transactions through to 
the memory controller. Figure 6 shows the combined effect of all these controlling mechanisms 
operating simultaneously.  At very low injection rates, LL transactions get their guaranteed bandwidth 
(~10% of total bandwidth) due to their higher priority. HB traffic utilizes the bulk of the remaining 
bandwidth as RT traffic is still small. With increasing injection rates, LL transactions continue to get as 
much bandwidth as requested but HB transactions start stalling in favor of RT transactions which need 
a guaranteed response time due to deadline scheduling. This trend continues with increasing rate of 
injection of RT traffic. At around 90% injection rate, the LL transactions can no longer continue 
getting their guaranteed bandwidth despite having the highest priority because the rate of RT injection 
is so high that deadline scheduling arbitrates over priority. Bandwidth utilization by HB transactions 
drops to 0% as they have no mechanism to override LL and RT transactions. At the tail end, near 100% 
injection rates, essentially all the bandwidth is allocated to RT transactions. A minuscule amount is left 
for the LL transactions on account of the memory controller scheduler finding opportunity holes 
between RT transfers to sneak in an LL transaction. The total delivered system bandwidth is 
consistently high throughout. Thus agent QoS demands are being met without compromising on overall 
system bandwidth. 
 

 
Figure 6: Deadline Arbitration with increasing LL and RT Traffic Rates 

 
Under normal operating conditions, LL/RT injection rates in a mobile system do not exceed 60%. 
Under these conditions, LL traffic is guaranteed its ~10% bandwidth whereas the rest is distributed 
between RT and HB traffic.  

 
5. Bus Turnaround Time – An important control knob associated with the memory controller scheduler is 

the number of cycles after which the DRAM bus is released upon completing a series of transactions 
from a single agent. Once released, other agents get access to the bus and can start piping through their 
transactions. Context switching of the bus from one agent to another is not necessarily efficient for 
bandwidth utilization.  Figure 7 shows the two ends of the spectrum from fast bus release (low bus 
turnaround time) to slow bus release (high bus turnaround time). Fast release ensures lower latency for 
other agent transfers but potentially wastes DRAM bandwidth. On the other hand, slow release of the 
bus delivers high bandwidth – assuming the agents are always requesting – but increases the latency for 

Figure 6: Deadline Arbitration with increasing LL and RT Traffic Rates 
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other agents. The CoreLink DMC-500 scheduler has been designed to manage this bus turnaround 
effect efficiently. It provides users with programmable parameters and guidelines on when to do this in 
the most optimized manner, keeping into account the types of agents requesting, the transaction type, 
coherency, rank, bank and priority.   

 
Figure 7: Effect of Bus Turnaround Time on Bandwidth Utilization 

 
6. Queue Fill Threshold – The memory controller has a large internal queue for storing incoming 

transactions. During operation, it may so happen that all the queue entries are filled with low priority 
transactions creating back-pressure on subsequent incoming high priority transactions. In order to 
ensure that these high priority transactions are always serviced, it is necessary to reserve some queue 
entries for high priority accesses only. The degree of ‘fullness’ of the queue as measured in groups of 
1/16th size of the queue is referred to as the “Fill Threshold”. So a Fill Threshold of 16 implies there are 
no reserved queue entries for subsequent high priority transactions whereas a threshold of 6 implies 
62.5% of the queue entries are reserved for high priority transactions. Reserving queue entries reduces 
the number of opportunities that the scheduler has to optimize the bandwidth utilization and hence 
results in slightly dropped utilization. Figure 8 shows simulation results achieved for a Fill Threshold 
of 6. This threshold value was chosen as it only resulted in a 4% loss of bandwidth utilization as seen in 
the left graph in Figure 8. Lower values of Fill Threshold (implying higher number of reserved queue 
entries) resulted in a substantial bandwidth loss and would hence not be advisable. The right graph in 
Figure 8 shows the effect of selected Fill Threshold on the average and maximum latencies for LL and 
RT transactions. With Fill Threshold of 6 there is a significant reduction in these latencies at only 4% 
additional loss of bandwidth utilization. This is the type of programming trade-off users of CoreLink 
DMC-500 can make to optimize the latency response for their LL and RT traffic. 
 

Figure 7: Effect of Bus Turnaround Time on Bandwidth Utilization 
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Figure 8: Effect of Queue Fill Threshold on Bandwidth, Average and Max Latencies 

 
7. QoSACCEPT Signaling – All the QoS mechanisms described above operate at the micro-level inside 

the DMC-500. Super-imposed on these mechanisms are more coarse or macro-level QoS mechanisms 
that operate in the Corelink CCI-550 interconnect. An in-depth description of these mechanisms is 
outside the scope of this paper. Our performance analyses of CoreLink CCI-550 and DMC-500 
subsystems showed that if the memory controller provides visibility to the interconnect of its queue 
fullness, the interconnect was able to make more informed decisions at the macro-level, thereby 
improving system performance significantly. This visibility is provided to the interconnect using 
QoSACCEPT signaling which indicates the QoS value above which the memory controller is willing 
to accept transactions based on its own internal Queue Fill Threshold and transactions that are in flight. 
The interconnect then attempts to route transactions with QoS values to the memory controller module 
that’s willing to accept them.   
 
Figure 9 shows effect of enabling QoSACCEPT in a system with CPU (LL) and GPU (HB) traffic. The 
memory controller is programmed with a QoS Threshold value of 12, implying that it will back-
pressure transactions with QoS value less than 12 if its internal queue crosses a certain Fill Threshold. 
The graph measures the latency of the transaction within the interconnect before it gets accepted by the 
memory controller.  Consider 4 different cases in this performance experiment:  

Figure 8: Effect of Queue Fill Threshold on Overall Bandwidth,  Average and Max Latencies 
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Figure 9: Effect of QoSACCEPT on LL access Latency within CCI-550 

 
Case 1 – QoSACCEPT mechanism and GPU traffic are turned off. Since the only traffic flowing 
through the interconnect is the CPU traffic, there’s no back pressure from the memory controller. 
Consequently the latency of transactions within the interconnect is small.  
 
Case 2 – Next GPU traffic is turned ON at the same QoS value as CPU traffic. Both agents are 
competing for memory bandwidth and there is significant back-pressure from the memory controller 
resulting in very long CPU latency within the interconnect.  
 
Case 3 – The CPU QoS value is then increased from 11 to 15 giving it a higher priority over GPU 
transations. This reduces the latency of CPU traffic within the interconnect.  
 
Case 4 – Finally, keeping the same QoS values for GPU and CPU traffic, QoSACCEPT mechanism is 
turned ON. When its internal queues start filling up, the memory controller exerts back-pressure on the 
GPU traffic whose QoS value is lower than the programmed QoSACCEPT threshold. However in this 
scenario the interconnect exploits the QoSACCEPT signaling to manage traffic flow rather than 
regulate traffic more generally, and consequently CPU transaction latency drops to almost the same as 
Case 1.  

 
The QoSACCEPT mechanism is fundamentally the escalation of Queue Fill Threshold information to the 
memory controller interface. This escalation enables better macro-regulation for the interconnect and increases 
overall efficacy of the combined solution. This showcases the importance of close integration between the 
interconnect and memory controller, achieved by CoreLink CCI-550 and DMC-500.   
 
 

Summary 
In this paper, we have explored various memory controller performance optimization techniques for SoCs 
characterized by mobile style architecture. ARM builds memory controllers for advanced memories targeting 
mobile SoCs with the goal of providing the best, optimized performance from CPU to memory for LL, HB and 
RT traffic agents. Although the mobile traffic characteristics described in this paper have been simplified for 
ease of analysis and explanation, extensive system simulations, hardware emulation using complex, real-world 
traffic traces and years of partner success confirm that the mobile memory subsystem performance remains true 
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to its design intent. Specifically, integration of interconnect and memory controller QoS provides further 
improvements in results not achievable by individual blocks alone. 
 
Future work includes extension of this integration to include ARM processors as well, providing a low-latency 
fast path to memory, performing speculative fetches and optimizing the use of CPU and system caches for 
further enhancements in memory access performance.    
 
 


