

Utilizing Features in an ARM®
Cortex®-M Processor to Create

Robust Systems

Joseph Yiu, Tim Menasveta

What we are trying to cover
– NOT : Preventing hardware error

– NOT : General coding practice

– YES : Cortex-M processor specific topics

What can go wrong?

Stack Issues

Exception Handling on Cortex-M Processors

Software Techniques for Robustness

Recommendation for Fault Handlers

Overview

Stack overflow / stack leak

– A very common root cause of failure

Inadequate checking of user/external inputs

Hardware Errors

– Memory corruptions

– Bit flip in SRAM

– Soft error (Data corruption) inside hardware

Consequences

– Fault exceptions

– Lock-up

What can go wrong?

Determining the stack size requirements
– Stack report from tools are useful…
– Maximum stack size for the application + maximum stack size used by

ISRs + Maximum size of stack frames for each level of ISR stacking (9
or 27)

– Beware of nesting of exceptions

Selecting the right stack arrangement on Cortex-M
– 2 Stack Pointers (Main Stack Pointer – MSP, and Process Stack

Pointer – PSP)
– Need to determining relevant stack pointer MSP or PSP in fault

handling

Detecting stack overflow in runtime
– Run-time detection requirements
– MPU as trigger

Stack Issues

Stack usage report available in many development suites

– Reports stack usage per function

– Reports Maximum stack size in a call tree

– Beware of limitations…

Need to also consider stack used by exception handlers
and their stack frames

– Exception nesting needs to be considered

Sizing the stack

No OS Stack Usage

Top of Stack at

startup

Stack used by

Thread

Exception stack

frame

Exception stack

frame

Stack used by

ISR

Stack used by

ISR

Maximum stack

size for Thread

Maximum stack

size for Handler

Stack growth

downwards Spare stack

space

Maximum stack size =

Maximum stack size for the application +

Maximum stack size used by ISRs +

Maximum size of stack frames for each
level of ISR stacking

OS / Multi-threaded Stack Usage

Maximum stack

size for Handlers

Maximum stack

size for Thread #1

Stack for Thread

#1

Exception stack

frame

Stack required for

Thread #1

Spare space

Maximum stack

size for Thread #2

Stack for Thread

#2

Exception stack

frame

Stack required for

Thread #2

Spare space

Top of Stack at

each Thread

Main Stack for

OS

Stack used by

ISR #A

Exception stack

frame

Stack used by

ISR

Top of Stack at

each Thread

MSP during

operation

Spare stack

space

Maximum stack size =

Maximum stack size for application thread +

size of stack frame (9 or 27 words) +

space software stacking operations in OS
context switching code

Sizing the Stack

For each IRQ/exception priority level

For each IRQ/exception At this level
(including HardFault, NMI)

check the maximum stack size usage

ADD the stack size needed for the
stack frame for next level of ISR (unless

it is an NMI).

If this ISR do not use FPU, stack frame
is up to 9 words, otherwise is 27 words

Determine the maximum stack size
needed for this level

ADD the maximum stack size for each
level together

Determine the maximum stack size
needed for this level

Stack size in main stack required

for exception handling

MSP and PSP dual stack pointers maintain separate
stacks for Operating Systems and Application Threads

It can also be useful for applications without OS
– PSP for thread

– MSP for handlers

Fault can trigger exception handler from either OS or
thread mode – check valid pointer when exception
occurred!

Dual Stack Pointers on Cortex-M

TST LR, #0x4; Test EXC_RETURN number in LR bit 2

ITE EQ; if zero (equal) then

MRSEQ R0, MSP; MSP was used, put MSP in R0

MRSNE R0, PSP; else, PSP was used, put PSP in R0

… ; carry-out validity check on stack pointer

Main Stack

Process Stack PSP

MSP Address

Key word fill (e.g. 0xDEADBEEF)

– For development only – detect by memory inspection, and can
miss worst cases

Periodic checks of MSP by Timer interrupt

– Delayed detection

Added Instrumentation code

– Not suitable for deployment

Immediate Detection is better

– Place stack at bottom of memory page

– Define non-accessible regions in Memory Protection Unit (MPU)

Stack Overflow / Leak Detection

Architecture ARMv6-M ARMv7-M ARMv7E-M

Processor Core Priority Cortex-M0 Cortex-M0+ Cortex-M3 Cortex-M4

Reset -3 (Highest)

NMI -2

Hard Fault -1

MemManage Fault Programmable

Usage Fault Programmable

Bus Fault Programmable

SVC Programmable

Debug Monitor Programmable

PendSV Programmable

SYSTICK Programmable

Interrupt #0 Programmable

Interrupt #1 Programmable

Interrupt #2 Programmable

… …

Interrupt #N Programmable

Exceptions on Cortex-M

Placing Stack at Bottom of SRAM

Reserved Stack

space

Stack for thread

and handlers

Spare stack

space

Invalid address

range

SRAM range

Data variables

Stack growth

downwards

Initial SP

BusFault is

triggered when

accessing here

Heap

Invalid address

range

Spare Heap

space

Heap growth

downwards

Memory Address

Reserved Heap

space

No Access Regions by MPU

MPU region for

Stack space

Stack for thread

and handlers

Spare stack

space

Invalid address

range

SRAM range

Data variables

Stack growth

downwards

Initial SP

MemManage Fault is triggered when

accessing here (Can be used as

reserved stack space for HardFault /

NMI because MPU is bypassed in

these exceptions)

Heap

Invalid address

range

Spare Heap

space
Heap growth

downwards

Memory Address

MPU region for

Heap space & data

Defined as No

access by the

MPU

Can be used as

reserved stack space

for HardFault / NMI

Prevents application task from corrupting OS or other task data

– Improves system reliability

Up to eight configurable regions

– Address

– Size

– Memory attributes

– Access permissions

Optional in Cortex-M0+,

 Cortex-M3, Cortex-M4

 and Cortex-M7

Memory Protection Unit (MPU)

void func(const char* input) {

 char buf[8];

 do_task();

}

int main(int argc, char* argv[]) {
 func(argv[1]);

 return 0;

}

XN attribute in MPU

Stack of main()

buf[7,..4]

Return address

buf[3,..0]

Argument of func()

Potentially modify return address

Prevent Stack overflow attacks

Malicious code

X

‘XN’ region defined in MPU

Short, Simple Handlers
– Split if necessary and used PendSV

INT mask register
– Block out exceptions during critical code execution

Never-execute MPU Attribute
– Prevent malicious injected code execution

Stack leak detection in SW
– Low priority Timer periodically keeps track of stack usage size

Validation of external inputs
– Prevents failures due to unintentional or malicious input of unbounded

arguments

SW runtime diagnosis
– Run-time self-test software, e.g. Yogitech’s fRSTL

Software Techniques

Stack overflow is the most common cause of fault
– MPU enables real-time detection of stack overflow

– Size your stack usage carefully

– Keep handlers short and simple

– Avoid C lib functions such as printf() and malloc()

– Split fault handlers to critical short parts to avoid stack errors in
fault handlers

Check MSP valid
– Stack overflow might have caused the exception – check valid

stack pointer before handling

Automatically reset of system
– Not recommended during development/debugging

Recommendation for fault handlers

Joseph Yiu

Senior Embedded Technology Manager

Joseph.Yiu@arm.com

Tim Menasveta

Product Manager

Tim.Menasveta@arm.com

