
Page 1 embedded world Conference 2014

ARM® Cortex®-M Processor based System

Prototyping on FPGA

Joseph Yiu

Senior Embedded Technology Specialist,

CPU Division, ARM

Cambridge, UK

Abstract — Many SoC designers need to design FPGA

prototypes of Cortex-M series processor-based systems for

system design evaluation, verification, debug tool testing, etc.

While the designs might not be highly complex, there are certain

challenges and a number of areas need to be considered. For

example, the size of the FPGA needed, FPGA board choices,

system IP selection, memory systems, etc. This paper also covers

various topics that are useful for both FPGA and SoC designers

such as clock domains of a Cortex-M series processor-based

system, reset generation logic and system performance.

Keywords—Cortex-M Processors; FPGA; CMSDK

I. INTRODUCTION

Very often when ARM Cortex-M processors are mentioned,

people would associate them with low power, high

performance microcontroller products. However, for many

hardware system designers working on sensors, ASSPs, and

even Internet of Things (IoT) devices, they need to create their

own Cortex-M processor-based systems instead of using off

the shelve microcontrollers. Many of these engineers need to

prototype their designs on FPGA for system level verification,

early software development and so on.

Over the years ARM technical support team receive various

enquiries from customers about FPGA prototyping. This paper

covers some of these frequently asked questions and

additional hints and tips on handling these design works.

II. ABOUT THE ARM CORTEX-M PROCESSORS

Currently there are five processors in the ARM Cortex-M

processor series [ref 1], 4 of them are designed for

microcontrollers, ASICs and SoC designs:

 Cortex-M0 – smallest ARM processor with just 12K

gates at minimum configuration

 Cortex-M0+ - state of the art ARM energy efficiency

with similar size as the Cortex-M0 processor, and has

additional feature options.

 Cortex-M3 – high performance processor core with

excellent features and designed for low power

embedded systems

 Cortex-M4 – superset of Cortex-M3 processor

features, with addition instructions for DSP and

floating point applications.

ARM also has a processor called the Cortex-M1

processor. It has the same architecture as the Cortex-M0 and

Cortex-M0+ processors, and is optimized for FPGA

applications. The Cortex-M1 processor is available in various

editions and sources:

 The standard Cortex-M1 processor is delivered as

Verilog RTL, use JTAG or Serial Wire debug

interface, and use AMBA AHB-Lite for system bus.

 Microsemi® has a number of Cortex-M1 processor

enabled devices [ref 2] and users can create the

design in Microsemi’s Libero IDE.

 The Altera® Cyclone® III edition [ref 3] is delivered

in netlist form, and is modified to use Avalon bus

interface and use Altera USB Blaster for debug.

Users can create the design in Altera QSys IDE.

From software programmer’s model point of view these

editions are the same.

From implementation side, the Cortex-M1 processor [ref

4] differs from other Cortex-M processors in several ways:

 Enables high operating clock frequency for FPGA

fabric. The data path is optimized for higher clock

frequency (over 200MHz in high end FPGAs).

 Includes Tightly Couple Memory (TCM) for FPGA

designs. The design has optional memory blocks

Page 2 embedded world Conference 2014

directly coupled to the processor to enable instruction

and data accesses at minimum latency.

 In some cases, FPGA vendor specific configurations

or features.

Similar to other ARM Cortex-M series processors, the

Cortex-M1 processor was designed with Verilog RTL and can

be licensed directly in Verilog form. All of the ARM Cortex-

M processors can be implemented in most modern FPGA

technologies. In general, the designs of the Cortex-M

processors:

 Use positive edge triggered flip-flops (apart from

TDO output in JTAG interface)

 Contain only fully static, synchronous logic

 Are configurable (Verilog parameter options)

These characteristics make the Cortex-M processors easy to

be implemented in most common FPGA devices.

III. WHICH FPGA TO USE?

One of the most common questions from our customers is -

are there any special requirements of what FPGA to use? On

the technical side, because the design is just plain Verilog

RTL, there is no special technical requirement. The main

requirement is that the tools being used need to support

Verilog 2000, and of course the FPGA need to be big enough

to implement the complete design including the peripherals.

For Cortex-M0, Cortex-M0+ and Cortex-M1 processor-

based designs, ARM has carried out some testing on low cost

FPGA boards including Terasic DE0 (Cyclone III, ~16K LE,

[ref 5]), Terasic DE1 (Cyclone II, ~20K LE, [ref 6]), and

Digilent Nexys™ 3 Spartan-6 FPGA board (Xilinx®

XC6LX16-CS324, [ref 7]) for some Cortex-M0 processor-

based designs. They all work fine and so it is entirely possible

to prototype a small system with low cost FPGA board. ARM

also has a low cost FPGA board suitable for prototyping of

Cortex-M processor based systems, which is covered in a later

section of this paper.

For Cortex-M3 or Cortex-M4 processor-based designs,

larger FPGA would be required. A test has been done

successfully to put a small Cortex-M3 processor-based system

in a DE1 board (~20K LE) and it can squeeze in the FPGA

only if a number of debug options (e.g. ETM instruction

trace), system feature options (e.g. Memory Protection Unit,

MPU) are removed, and the peripherals in the system are

reduced. For a typical system prototyping a 40K to 50K LE

FPGA should be sufficient for the Cortex-M3 processor or

Cortex-M4 processor, plus a collection of peripherals.

The maximum clock frequency is other common

requirement for our customers when selecting which FPGA to

use. Like any FPGA designs the maximum frequency can be

affected by wide range of factors (e.g. synthesis tools,

synthesis options, FPGA utilization, pin assignment, speed

grade, etc). In addition, it can also be affected by the

configuration options of the processors. For example, the

MPU option on the Cortex-M3 and Cortex-M4 processor can

potentially reduce the maximum clock frequency by around

10% because it add additional logic to the combinatorial paths

on the system buses.

Another factor that can greatly affect the maximum clock

frequency is the size of memory being used on the FPGA.

While some FPGA have over 1MB of on chip memory,

creating a single memory block of this size could result in

signal routing congestion and therefore could reduce clock

frequency and also maximum logic utilization.
The table below shown the maximum clock frequency

(reported from timing analysis) some test configurations based
on FPGA implementation of the example system in Cortex-M
System Design Kit (CMSDK, [ref 8]), with 16KB ROM and
8KB SRAM, and peripherals, with Altera Stratix III
(EP3SL50F780C2) and Altera Quartus II 10.1:

Processor Maximum clock freq

(Without MPU)

Maximum clock freq

(With MPU)

Cortex-M0 98.8MHz Non Applicable

Cortex-M0+ 106.09MHz 95.33MHz

Cortex-M3 93.78MHz 88.9MHz

Cortex-M4 with FPU 84.77MHz 81.79MHz

Table 1: Example maximum clock frequency of various Cortex-M

processor systems with Altera Stratix III FPGA.

For low cost FPGA such as Cyclone II, previous testings in

ARM showing about 40MHz for a simple Cortex-M0

processor-based system with the Terasic DE1 board. Whereas

an Altera Cyclone V device (5CEBA5U19C7, using Altera

Quartus II 12.1) can support higher clock frequencies as

shown in table 3, using the same CMSDK example systems:

Processor Maximum clock freq

(Without MPU)

Maximum clock freq

(With MPU)

Cortex-M0 60.48MHz Non Applicable

Cortex-M0+ 60.01MHz 51.96MHz

Cortex-M3 46.91MHz 43.56MHz

Cortex-M4 with FPU 43.87MHz 40.43MHz

Table 2: Example maximum clock frequency of various Cortex-M
processor systems with Altera Cyclone V FPGA.

Speed of the Cortex-M1 processor on a number of FPGA

devices is listed on table 3 (data from the Cortex-M1

processor home page, [ref 4]):
FPGA

Type
Example Frequency

(MHz)

Area

(LUTS)

65 nm Altera Stratix-III, Xilinx Virtex-5 200 1900

90 nm Altera Stratix-II, Xilinx Virtex-4 150 2300

65 nm Altera Cyclone-III 100 2900

90 nm Altera Cyclone-II, Xilinx

Spartan-3
80 2600

130 nm Actel ProASIC3, Actel Fusion 70 4300 Tiles

Table 3: ARM Cortex-M1 frequency and area

There is also a non technical requirement to consider. If

the FPGA prototype is to be delivered to an external party, the

FPGA being used needs to support bit image encryption for IP

http://www.arm.com/community/partners/display_company/rw/company/altera-corporation/
http://www.arm.com/community/partners/display_company/rw/company/actel-corporation/

Page 3 embedded world Conference 2014

protection purpose. Please check with the ARM processor

license agreement to see the details of the requirement.

Instead of using typical FPGA devices, in many

applications it is also possible to consider alternate solutions

such as:

 Microsemi SmartFusion product (based on Cortex-

M3 processor, [ref 9])

 Cypress® PSoC®5LP (Cortex-M3, [ref10]) and

PSoC4 (Cortex-M0 processors, [ref 11])

 Triad® Semi’s Mocha Configurable Array (Cortex-

M0 processor-based, [ref 12])

These devices contain a Cortex-M processor with

configurable components including mixed signal peripherals,

and in many case users can select the required configuration

using the IDE, without any RTL coding.

IV. FPGA BOARD SELECTION

Most designers use ready to use FPGA boards instead of

creating new ones. In addition to the FPGA selection

considerations mentioned in previous section, these designers

might also need to consider additional board level features,

which can affect how quick they can get their system running

and how their system performs.

A. Memory System

In many cases the memory blocks inside the FPGA is not

enough and therefore it is necessary to have additional

memory on the FPGA board. Typically FPGA boards might

include some of the following types of memories, and each of

them has pros and cons:

Memory type Pros Cons

SRAM Easy to integrate with

simple AHB wrapper.

Many FPGA boards use

16-bit async SRAM and
each access takes

multiple clock cycles to

complete, so result in
slow performance.

PSRAM Easy to integrate with

simple AHB wrapper in
asynchronous mode.

Low cost with large
memory size.

Many FPGA boards with

PSRAM use 16-bit
interface and each access

takes multiple clock

cycles to complete, so
result in slow

performance.

Also PSRAM has slow

access time when use in

asynchronous mode.

ZBT SRAM Fast access time and easy
to integrate with Cortex-M

processor with AHB

wrapper

Relatively higher cost

DDR/DDR2 Large memory size.

Low cost

Need to have AHB DDR
memory controller

(additional IP) and high

access latency.

Flash memory for

program storage

Large memory size.

Low cost

Slow access time (e.g.

10MHz).

Table 4: Commonly used memories for FPGA boards

Since the current Cortex-M series processors do not have

cache memory, use of DRAM or DDR memories can be

inefficient because these memory devices are designed for

burst access operations. One possibility is to add a system

level cache, which increases the SRAM usage inside the

FPGA and can be complex to design. Simple asynchronous

SRAM or PSRAM enable simpler integration but the

performance could still be limited.

An alternative solution is to use ZBT (Zero Bus

Turnaround) synchronous SRAM. They are relatively

expensive, but can be integrated with Cortex-M processor-

based systems using simple bus wrappers, allowing high

performance (zero wait state accesses) and large memory size

(e.g. 1MB to 16MB). If it is necessary to run programs from

ZBT SSRAM, the system can be booted up with a slow flash

memory, then copy the program image to the ZBT SSRAM

and then execute from there at full speed. However, when

doing so unregistered paths between the processor’s bus

interface and the ZBT SSRAM are present, which could limit

the maximum clock frequency.

In the first generation of the ARM Microcontroller

Prototyping System (MPS, [ref 13]), an FPGA platform

developed for the Cortex-M series processors, the system can

run programs from ZBT SSRAM at 50MHz, and the speed

was limited by another AHB connection between two FPGAs.

B. Debug Connectors

Many FPGA board contains a large number of peripheral

connectors and expansion port connectors. However, most of

them don’t have any connector specifically designed for

debugging of ARM systems. There are a number of commonly

used debug connector arrangements for ARM systems [ref

14], as shown in figure 1 below:

20 pin IDC connector
10 pin Cortex debug

connector

20 pin Cortex debug +

ETM trace connector

38 pin Mictor

debug+trace connector

Fig. 1. Commonly used debug connectors for ARM systems

Page 4 embedded world Conference 2014

 These debug connector arrangements are used by various

debug tool vendors in their debug probe designs, and therefore

having such debug connector arrangement in the FPGA board

is highly desirable, as users of the board do not need to waste

time to create their own debug adaptors.

C. ARM FPGA Board solution

In order to help ARM designers to create FPGA prototypes

easily, ARM has created FPGA boards such as the Cortex-M

Prototyping System [ref 15] as shown in figure 2.

Fig. 2. Cortex-M Prototyping System

The Cortex-M Prototyping System is designed to meet

various typical requirements for Cortex-M series processor-

based hardware development:
 Larger FPGA (Altera Cyclone 5, 5CEBA7F31C8N with

approx 150LE)

 4 x 2MB ZBT SSRAM (32-bit each) for external memory

system (2 of them arranged as a 64-bit memory).

 16MB PSRAM (16-bit) for applications with even larger

memory requirements

 Various debug connectors as shown in figure 1

 Broad range of peripherals (Touch screen color LCD,

GPIO, SPI, I2S audio, VGA, Ethernet, DIP switches,

buttons, LEDs)

 Expansion ports (easy to use IDC headers)

 Bit image encryption support

 Low cost (US$995)

The FPGA images and program images are stored on a

micro SD card on the board, and is programmed to the FPGA

using a Cortex-M processor-based microcontroller on board

when the system is powered up. The USB connection works

as a mass storage device and allows the FPGA and program

images to be dragged and dropped to the SD card easily, so

there is no need to install any special software driver to

program the board. The board packages include a number of

FPGA images with various Cortex-M processors, and an

example system design. More information on this board can

be found on ARM web site [ref 15].

V. SYSTEM IP CONSIDERATIONS

If using products like Altera QSys, Cypress PSoC,

Microsemi SmartFusion, etc, then the design environment

already comes with a number of system and peripherals IP and

possibly there is no need to worry about sourcing these IP. But

when designing custom FPGA systems at RTL level, then it

might be necessary to consider what system and peripheral IP

are needed.

Many of the hardware designers are experts on peripheral

IP designs and there are many peripheral IP suppliers in the

world, so in most cases, peripheral IP is not a major challenge

to most hardware designers. However, in some applications,

the bus fabric IP designs can be equally complex if with the

design contain multiple bus masters or need to deal with

multiple clock domains in the system.

On the other hand, when developing a simple system, then

it might be difficult to justify the cost of licensing system IP.

However, developing ARM AMBA AHB Lite (Advanced

High-performance Bus) and APB (Advanced Peripheral Bus)

infrastructure components could be time consuming and could

add to project risk because it is not easy to debug bugs in

system IP using software debugging techniques.

A piece of great news is that the Cortex-M Prototyping

System mentioned earlier included an example project based

on the Cortex-M0 DesignStart (processor IP to be licensed

separately, [ref 16]). The example system included a subset of

the bus fabric components in the Cortex-M System Design Kit

(CMSDK, [ref 8]). So designers can create their simple system

with AMBA AHB Lite and APB bus protocols quickly.
When designing a complex system with multiple AMBA

AHB Lite bus masters and AHB Lite bus segments, licensing
the full version of the CMSDK is a good solution. The
CMSDK contains various AMBA AHB Lite bus components
[ref 9] such as:

Components Descriptions

AHB Bus Matrix Configurable AHB Lite interconnect to support

multiple bus masters and multiple slave port,

support concurrent accesses

AHB Master Multiplexer Simple AHB interconnect to support up to three
AHB Lite bus masters to access a shared AHB

Lite bus segment

AHB sync up and sync
down bridges

Enable AHB transfers to pass on to another
AHB bus segment running at a different clock

speed with is multiple or divide or the

originating bus segment.

AHB timing isolation
bridge

Useful for timing isolation between two AHB
bus segment on two FPGAs.

AHB to AHB

asynchronous bridge

For bridge an AHB bus segment to a different

AHB bus segment at a asynchronous clock
domain

AHB to APB bridges Conversion from an AHB bus segment to an

APB bus. Available in synchronous version and
asynchronous version.

AHB upsizer and

downsizer

Allows 32-bit and 64-bit AHB bus segments to

join together.

Table 4: Some of the AMBA components in the CMSDK that are useful for
FPGA system designs

 The CMSDK also includes baseline peripherals (e.g. GPIO,

timer, UART), verification components (e.g. bus protocol

Page 5 embedded world Conference 2014

checkers) and example systems for Cortex-M series

processors.

VI. MORE ON THE MEMORY SYSTEM DESIGN

A. Using internal SRAM blocks

The easiest way to add memories to a Cortex-M series

processor in an FPGA design is to use SRAM blocks inside

the FPGA.

Unless the Cortex-M1 processor, which has TCM

integration as part of the processor, is being used, it is

necessary to connect memories to the processor via an AMBA

AHB interface. The available methods for creating the

memories are tool chain specific, but with most of the tools

ARM engineering team have tried with Altera and Xilinx

FPGA, a synthesizable AMBA AHB memory block, as listed

below, can be used:
Verilog RTL for synthesizable AHB Block RAM

module AHBBlockRam #(

 // --------------------------------------

 // Parameter Declarations

 // --------------------------------------

 parameter AWIDTH = 12

)

 (

 // --------------------------------------

 // Port Definitions

 // --------------------------------------

 input HCLK, // system bus clock

 input HRESETn, // system bus reset

 input HSEL, // AHB peripheral select

 input HREADY, // AHB ready input

 input [1:0] HTRANS, // AHB transfer type

 input [1:0] HSIZE, // AHB hsize

 input HWRITE, // AHB hwrite

 input [AWIDTH-1:0] HADDR, // AHB address bus

 input [31:0] HWDATA, // AHB write data bus

 output HREADYOUT, // AHB ready output to S->M mux

 output HRESP, // AHB response

 output [31:0] HRDATA // AHB read data bus

);

 parameter AWT = ((1<<(AWIDTH-2))-1); // index max value

 // --- Memory Array ---

 reg [7:0] BRAM0 [0:AWT];

 reg [7:0] BRAM1 [0:AWT];

 reg [7:0] BRAM2 [0:AWT];

 reg [7:0] BRAM3 [0:AWT];

 // --- Internal signals ---

 reg [AWIDTH-2:0] haddrQ;

 wire Valid;

 reg [3:0] WrEnQ;

 wire [3:0] WrEnD;

 wire WrEn;

 // --------------------------------------

 // Main body of code

 // --------------------------------------

 assign Valid = HSEL & HREADY & HTRANS[1];

 // --- RAM Write Interface ---

 assign WrEn = (Valid & HWRITE) | (|WrEnQ);

 assign WrEnD[0] = (((HADDR[1:0]==2'b00) && (HSIZE[1:0]==2'b00)) ||

 ((HADDR[1]==1'b0) && (HSIZE[1:0]==2'b01)) ||

 ((HSIZE[1:0]==2'b10))) ? Valid & HWRITE : 1'b0;

 assign WrEnD[1] = (((HADDR[1:0]==2'b01) && (HSIZE[1:0]==2'b00)) ||

 ((HADDR[1]==1'b0) && (HSIZE[1:0]==2'b01)) ||

 ((HSIZE[1:0]==2'b10))) ? Valid & HWRITE : 1'b0;

 assign WrEnD[2] = (((HADDR[1:0]==2'b10) && (HSIZE[1:0]==2'b00)) ||

 ((HADDR[1]==1'b1) && (HSIZE[1:0]==2'b01)) ||

 ((HSIZE[1:0]==2'b10))) ? Valid & HWRITE : 1'b0;

 assign WrEnD[3] = (((HADDR[1:0]==2'b11) && (HSIZE[1:0]==2'b00)) ||

 ((HADDR[1]==1'b1) && (HSIZE[1:0]==2'b01)) ||

 ((HSIZE[1:0]==2'b10))) ? Valid & HWRITE : 1'b0;

 always @ (negedge HRESETn or posedge HCLK)

 if (~HRESETn)

 WrEnQ <= 4'b0000;

 else if (WrEn)

 WrEnQ <= WrEnD;

 // --- Infer RAM ---

 always @ (posedge HCLK)

 begin

 if (WrEnQ[0])

 BRAM0[haddrQ] <= HWDATA[7:0];

 if (WrEnQ[1])

 BRAM1[haddrQ] <= HWDATA[15:8];

 if (WrEnQ[2])

 BRAM2[haddrQ] <= HWDATA[23:16];

 if (WrEnQ[3])

 BRAM3[haddrQ] <= HWDATA[31:24];

 // do not use enable on read interface.

 haddrQ <= HADDR[AWIDTH-1:2];

 end

`ifdef CM_SRAM_INIT

initial begin

 $readmemh("itcm3", BRAM3);

 $readmemh("itcm2", BRAM2);

 $readmemh("itcm1", BRAM1);

 $readmemh("itcm0", BRAM0);

 end

`endif

 // --- AHB Outputs ---

 assign HRESP = 1’b0; // OKAY

 assign HREADYOUT = 1'b1; // always ready

 assign HRDATA =

 {BRAM3[haddrQ],BRAM2[haddrQ],BRAM1[haddrQ],BRAM0[haddrQ]};

endmodule

The SRAM can be initialized with hex file image.

Since the RAM array is declared as four separate data arrays,

four hex files need to be generated from a program image. If

using ARM Development Studio 5 (DS-5) toolchain [ref 18],

such Verilog HEX files can be generated using the following

command line [ref 19]:

$> fromelf --vhx --8x4 image.elf –output itcm

This operation results in 4 hex files, (itcm0, itcm1, itcm2,

itcm3), one for each byte lane. If using other tool chains, a

single Verilog hex/binary file could be generate from the

program image, and then use simple programs (e.g. a Perl

script) to split the image into four hex files.

Alternatively FPGA specific memory components can be

instantiated to define the memories. However this is not

portable as the memory components are FPGA specific.

B. Merging of ROM and SRAM

In a typical microcontroller device, it is essential to have
separate ROM (typically flash memories) and RAM (typically
on chip SRAM). However, in a FPGA device it is possible to
declare a SRAM block to handle both functions because initial
values for these SRAM blocks can be defined.

0x00000000

0x20000000

ROM

RAM

Typical memory map in

microcontrollers

0x00000000

0x20000000

SRAM

Merging of ROM and

RAM in a FPGA design

Program image

Data variables, stack,

heap, etc

Program image

Data variables, stack,

heap, etc

Fig. 3. Merging of ROM and SRAM into one unit in FPGA applications

Page 6 embedded world Conference 2014

By doing this the system design could be simplied,

however, this has several effects:

 If the design is to be ported to silicon later, the

behavior and the memory map of the system design

created might not match the system that will be

productized.

 For Cortex-M3 and Cortex-M4 processor-based

systems, the combining of ROM and RAM means the

memory system works as Von Neumann architecture

rather than Harvard bus architecture, which can result

in a small performance penalty, and can also increase

the interrupt latency.

Nevertheless, this is a nice technique for many projects.

C. Connecting external memories

Many FPGA board has asynchronous SRAM or PSRAM

on board. If the FPGA board used has 8-bit or 16-bit

asynchronous SRAM or PSRAM, the CMSDK has a simple

asynchronous SRAM interface block for AMBA AHB [ref

20]. This block can also be used to control certain peripherals

such as an Ethernet controller chip, as in the example design

in the Cortex-M Prototyping System [ref 15]. This component

is provided in the example project.

For other memories such as NOR flash, depending on the

actual flash memory interface, it might be possible to use the

same asynchronous SRAM interface component, or potentially

custom designed flash memory wrapper will have to be

created. If it is necessary to create new memory wrapper

design, the CMSDK memory interface component could still

be a good starting point. For flash programming, most of the

FPGA board vendors provide their own utilities to handle this.

However, running code from flash memories can limit the

performance of the system because:

 The access speeds of the flash memories are typically

quite slow (around 10MHz). So it might be necessary

to insert quite a few wait states for each memory

access.

 The flash memories on third parties FPGA boards are

usually either 8-bit or 16-bit, so for each 32-bit bus

transfer, the transfer has to be break down into 2 or 4

memory accesses.

VII. OTHER DESIGN CONSIDERATIONS

A. Clocks

The clocking arrangement of the Cortex-M series

processors is fairly simple. In simple single processor systems

there are up to two clock domains for Cortex-M0 and Cortex-

M0+, and 4 clock domains for Cortex-M3 and Cortex-M4

processors:

Cortex-M0/M0+

Processor core

Debug

slave bus

port

Serial Wire /

JTAP DAP

module

Memory system,

peripherals

Debug

Interface
System

Fig. 4. Clock domains for Cortex-M0 and Cortex-M0+ processors

Cortex-M3/M4

Processor core

Debug

busSerial Wire /

JTAP debug

port module

Debug

Access

Port

Trace Port

Interface Unit

(TPIU)

Trace

bus

Memory system,

peripherals

Trace

port

Debug

Interface

Debug

bus
System

Trace

interface

Fig. 5. Clock domains for Cortex-M3 and Cortex-M4 processors

 Some of the clock domains can have multiple clock inputs

to allow clock gating implementation. Although the design

have Cross Clock Domain (CDC) handling logic such as

synchronizers and handshaking logic, it is still necessary to

make sure the FPGA synthesis setup declares the clock

sources as asynchronous. Please refer to FPGA tool

documentation for details.

 If it is necessary to have some parts of the memory systems

or peripheral bus running at a different clock speed, some of

the bus bridge components in the CMSDK would be useful for

such applications.

In order to reduce power consumption, the ARM Cortex-M

processors support clock gating options (Verilog parameter).

Depending on the FPGA tools being used it might be

necessary to replace the clock gating cells with FPGA specific

code (e.g. clock switches). In some cases the use of clock

gating option can affect the maximum clock frequency and

might lead to issues such as signal routing problem, or could

fail to complete the compilation due to running out of clock

switches on the device.

B. Reset

Typically a simple Cortex-M processor-based system has

two reset types: Power on Reset and system reset. The

difference is that system reset does not reset the debug logic in

the processor. The Cortex-M series processors have multiple

reset inputs, but most microcontroller devices only have one

reset pin because the system reset can be generated internally

using a “System Reset Request” - from a processor output

signal called SYSRESETREQ.

Page 7 embedded world Conference 2014

Cortex-M

Processor core

Power-on /

Debug reset

System

Reset

Reset

Synchronizer

External

reset source

Reset

generator

Reset

generator

Reset

Synchronizer

System reset

from debug

connector

SYSRESETREQ

Other reset source

(e.g. watchdog timer)

Fig. 6. Common reset arrangement for Cortex-M Processors

 The SYSRESETREQ is required for debug tool to reset the

system. Do not reset the whole system with this signal as the

debug tool can get confused and disconnect from the target

processor. In addition to SYSRESETREQ, it is also possible

to generate system reset using a reset pin from debug

connector. This is optional and requires one more reset input

pins.

 Some of the FPGA boards do not have a reset button, but a

user push button can be used as reset. Alternatively a simple

counter can be created to generate reset pulse. A number of

FPGA project examples (e.g. Terasic DE0 board) use a simple

counter. This solution works for FPGA because the flip-flops

reset to 0 by default, but this does not necessary work in

ASIC/SoC designs.

 Finally, do not forget to add reset synchronizers for each

reset signals. In some cases it might also be necessary to

instantiate buffers for reset signals.

VIII. CONCLUSIONS

In general, prototyping of Cortex-M processor-based

systems on FPGA is quite straight forward. Various system IP

blocks can be licensed from numerous sources including ARM

to help with meeting various system design requirements.

Tailor made FPGA boards specifically designed for the

Cortex-M processor prototyping are available from ARM, and

various system IP solutions are also available. For example,

the ARM Cortex-M System Prototyping System is a very

effective solution which meets various design requirements for

Cortex-M processor-based system prototyping, and includes a

subset of CMSDK components to make it easier to start.

REFERENCES

Product information referenced in this document included:

[1] ARM Cortex-M Processor home page:

http://www.arm.com/products/processors/cortex-m/index.php

[2] Microsemi Cortex-M1 enabled devices:

http://www.microsemi.com/products/fpga-soc/soc-processors/arm-

cortex-m1

[3] Altera Cortex-M1 processor page :

http://www.altera.co.uk/devices/processor/arm/cortex-m1/m-arm-

cortex-m1.html

[4] ARM Cortex-M1 home page:

http://www.arm.com/products/processors/cortex-m/cortex-m1.php

[5] Terasic DE0 board : http://de0.terasic.com.tw

[6] Terasic DE1 board / Altera Cyclone II starter kit :

http://de1.terasic.com.tw

[7] Digilent Nexys™ 3 Spartan-6 FPGA board :

http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS3

[8] ARM Cortex-M System Design Kit (CMSDK):

http://www.arm.com/products/processors/cortex-m/cortex-m-

system-design-kit.php

[9] Microsemi SmartFusion:

http://www.microsemi.com/products/fpga-soc/soc-

fpga/smartfusion

[10] Cypress PSoC5LP: http://www.cypress.com/PSoC5LP/

[11] Cypress PSoC4: http://www.cypress.com/psoc4/

[12] TRIAD ARM Powered™ Via Configurable Array Mixed Signal

Processors: http://www.triadsemi.com/services/arm-powered-vcas/

[13] Microcontroller Prototyping System (MPS),

http://infocenter.arm.com/help/topic/com.arm.doc.dai0227a/index.

html

[14] Debug adaptors for Cortex-M system:

http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13

634/cortex_debug_connectors.pdf

[15] ARM Cortex-M Prototyping System : http://www.arm.com/ve

[16] ARM Cortex-M0 DesignStart:

http://www.arm.com/products/processors/designstart-processor-

ip/index.php

[17] ARM CMSDK component Technical Reference Manual :

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0479c/index.

html

[18] ARM DS-5: www.arm.com/products/tools/software-tools/ds-

5/index.php

[19] ARM Compiler toolchain Using the fromelf Image Converter:

fromelf command line options:

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477i/BABH

HJJH.html ,

http://infocenter.arm.com/help/topic/com.arm.doc.dui0477i/BABE

FFAE.html

[20] ARM CMSDK AHB to external SRAM interface:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0479c/BABC
CAII.html

http://www.arm.com/products/processors/cortex-m/index.php
http://www.microsemi.com/products/fpga-soc/soc-processors/arm-cortex-m1
http://www.microsemi.com/products/fpga-soc/soc-processors/arm-cortex-m1
http://www.altera.co.uk/devices/processor/arm/cortex-m1/m-arm-cortex-m1.html
http://www.altera.co.uk/devices/processor/arm/cortex-m1/m-arm-cortex-m1.html
http://www.arm.com/products/processors/cortex-m/cortex-m1.php
http://de0.terasic.com.tw/
http://de1.terasic.com.tw/
http://www.digilentinc.com/Products/Detail.cfm?Prod=NEXYS3
http://www.arm.com/products/processors/cortex-m/cortex-m-system-design-kit.php
http://www.arm.com/products/processors/cortex-m/cortex-m-system-design-kit.php
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion
http://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion
http://www.cypress.com/PSoC5LP/
http://www.cypress.com/psoc4/
http://www.triadsemi.com/services/arm-powered-vcas/
http://infocenter.arm.com/help/topic/com.arm.doc.dai0227a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.dai0227a/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex_debug_connectors.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/13634/cortex_debug_connectors.pdf
http://www.arm.com/ve
http://www.arm.com/products/processors/designstart-processor-ip/index.php
http://www.arm.com/products/processors/designstart-processor-ip/index.php
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0479c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0479c/index.html
http://www.arm.com/products/tools/software-tools/ds-5/index.php
http://www.arm.com/products/tools/software-tools/ds-5/index.php
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477i/BABHHJJH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477i/BABHHJJH.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477i/BABEFFAE.html
http://infocenter.arm.com/help/topic/com.arm.doc.dui0477i/BABEFFAE.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0479c/BABCCAII.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0479c/BABCCAII.html

	I. Introduction
	II. About the ARM Cortex-M Processors
	III. Which FPGA to use?
	IV. FPGA Board selection
	A. Memory System
	B. Debug Connectors
	C. ARM FPGA Board solution

	V. System IP considerations
	VI. More on the memory system design
	A. Using internal SRAM blocks
	B. Merging of ROM and SRAM
	C. Connecting external memories

	VII. Other Design Considerations
	A. Clocks
	B. Reset

	VIII. Conclusions
	References

