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Abstract — Many SoC designers need to design FPGA 

prototypes of Cortex-M series processor-based systems for 

system design evaluation, verification, debug tool testing, etc. 

While the designs might not be highly complex, there are certain 

challenges and a number of areas need to be considered. For 

example, the size of the FPGA needed, FPGA board choices, 

system IP selection, memory systems, etc. This paper also covers 

various topics that are useful for both FPGA and SoC designers 

such as clock domains of a Cortex-M series processor-based 

system, reset generation logic and system performance. 
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I.  INTRODUCTION 

Very often when ARM Cortex-M processors are mentioned, 

people would associate them with low power, high 

performance microcontroller products.  However, for many 

hardware system designers working on sensors, ASSPs, and 

even Internet of Things (IoT) devices, they need to create their 

own Cortex-M processor-based systems instead of using off 

the shelve microcontrollers. Many of these engineers need to 

prototype their designs on FPGA for system level verification, 

early software development and so on. 

Over the years ARM technical support team receive various 

enquiries from customers about FPGA prototyping. This paper 

covers some of these frequently asked questions and 

additional hints and tips on handling these design works. 

 

II. ABOUT THE ARM CORTEX-M PROCESSORS 

Currently there are five processors in the ARM Cortex-M 

processor series [ref 1], 4 of them are designed for 

microcontrollers, ASICs and SoC designs: 

 Cortex-M0 – smallest ARM processor with just 12K 

gates at minimum configuration 

 Cortex-M0+ - state of the art ARM energy efficiency 

with similar size as the Cortex-M0 processor, and has 

additional feature options. 

 Cortex-M3 – high performance processor core with 

excellent features and designed for low power 

embedded systems 

 Cortex-M4 – superset of Cortex-M3 processor 

features, with addition instructions for DSP and 

floating point applications. 

ARM also has a processor called the Cortex-M1 

processor. It has the same architecture as the Cortex-M0 and 

Cortex-M0+ processors, and is optimized for FPGA 

applications. The Cortex-M1 processor is available in various 

editions and sources:  

 The standard Cortex-M1 processor is delivered as 

Verilog RTL, use JTAG or Serial Wire debug 

interface, and use AMBA AHB-Lite for system bus.   

 Microsemi® has a number of Cortex-M1 processor 

enabled devices [ref 2] and users can create the 

design in Microsemi’s Libero IDE. 

 The Altera® Cyclone® III edition [ref 3] is delivered 

in netlist form, and is modified to use Avalon bus 

interface and use Altera USB Blaster for debug. 

Users can create the design in Altera QSys IDE. 

From software programmer’s model point of view these 

editions are the same.  

From implementation side, the Cortex-M1 processor [ref 

4] differs from other Cortex-M processors in several ways: 

 Enables high operating clock frequency for FPGA 

fabric. The data path is optimized for higher clock 

frequency (over 200MHz in high end FPGAs).  

 Includes Tightly Couple Memory (TCM) for FPGA 

designs. The design has optional memory blocks 
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directly coupled to the processor to enable instruction 

and data accesses at minimum latency. 

 In some cases, FPGA vendor specific configurations 

or features. 

Similar to other ARM Cortex-M series processors, the 

Cortex-M1 processor was designed with Verilog RTL and can 

be licensed directly in Verilog form.  All of the ARM Cortex-

M processors can be implemented in most modern FPGA 

technologies. In general, the designs of the Cortex-M 

processors: 

 Use positive edge triggered flip-flops (apart from 

TDO output in JTAG interface) 

 Contain only fully static, synchronous logic 

 Are configurable (Verilog parameter options) 

These characteristics make the Cortex-M processors easy to 

be implemented in most common FPGA devices. 

 

III. WHICH FPGA TO USE? 

One of the most common questions from our customers is - 

are there any special requirements of what FPGA to use? On 

the technical side, because the design is just plain Verilog 

RTL, there is no special technical requirement. The main 

requirement is that the tools being used need to support 

Verilog 2000, and of course the FPGA need to be big enough 

to implement the complete design including the peripherals. 

For Cortex-M0, Cortex-M0+ and Cortex-M1 processor-

based designs, ARM has carried out some testing on low cost 

FPGA boards including Terasic DE0 (Cyclone III, ~16K LE, 

[ref 5]), Terasic DE1 (Cyclone II, ~20K LE, [ref 6]), and 

Digilent Nexys™ 3 Spartan-6 FPGA board (Xilinx® 

XC6LX16-CS324, [ref 7]) for some Cortex-M0 processor-

based designs. They all work fine and so it is entirely possible 

to prototype a small system with low cost FPGA board. ARM 

also has a low cost FPGA board suitable for prototyping of 

Cortex-M processor based systems, which is covered in a later 

section of this paper. 

For Cortex-M3 or Cortex-M4 processor-based designs, 

larger FPGA would be required. A test has been done 

successfully to put a small Cortex-M3 processor-based system 

in a DE1 board (~20K LE) and it can squeeze in the FPGA 

only if a number of debug options (e.g. ETM instruction 

trace), system feature options (e.g. Memory Protection Unit, 

MPU) are removed, and the peripherals in the system are 

reduced. For a typical system prototyping a 40K to 50K LE 

FPGA should be sufficient for the Cortex-M3 processor or 

Cortex-M4 processor, plus a collection of peripherals. 

The maximum clock frequency is other common 

requirement for our customers when selecting which FPGA to 

use. Like any FPGA designs the maximum frequency can be 

affected by wide range of factors (e.g. synthesis tools, 

synthesis options, FPGA utilization, pin assignment, speed 

grade, etc). In addition, it can also be affected by the 

configuration options of the processors. For example, the 

MPU option on the Cortex-M3 and Cortex-M4 processor can 

potentially reduce the maximum clock frequency by around 

10% because it add additional logic to the combinatorial paths 

on the system buses. 

Another factor that can greatly affect the maximum clock 

frequency is the size of memory being used on the FPGA. 

While some FPGA have over 1MB of on chip memory, 

creating a single memory block of this size could result in 

signal routing congestion and therefore could reduce clock 

frequency and also maximum logic utilization. 
The table below shown the maximum clock frequency 

(reported from timing analysis) some test configurations based 
on FPGA implementation of the example system in Cortex-M 
System Design Kit (CMSDK, [ref 8]), with 16KB ROM and 
8KB SRAM, and peripherals, with Altera Stratix III 
(EP3SL50F780C2) and Altera Quartus II 10.1: 

Processor Maximum clock freq  

(Without MPU) 

Maximum clock freq  

(With MPU) 

Cortex-M0 98.8MHz Non Applicable 

Cortex-M0+ 106.09MHz 95.33MHz 

Cortex-M3 93.78MHz 88.9MHz 

Cortex-M4 with FPU 84.77MHz 81.79MHz 

Table 1: Example maximum clock frequency of various Cortex-M 

processor systems with Altera Stratix III FPGA. 

 

For low cost FPGA such as Cyclone II, previous testings in 

ARM showing about 40MHz for a simple Cortex-M0 

processor-based system with the Terasic DE1 board. Whereas 

an Altera Cyclone V device (5CEBA5U19C7, using Altera 

Quartus II 12.1) can support higher clock frequencies as 

shown in table 3, using the same CMSDK example systems: 

  
Processor Maximum clock freq  

(Without MPU) 

Maximum clock freq  

(With MPU) 

Cortex-M0 60.48MHz Non Applicable 

Cortex-M0+ 60.01MHz 51.96MHz 

Cortex-M3 46.91MHz 43.56MHz 

Cortex-M4 with FPU 43.87MHz 40.43MHz 

Table 2: Example maximum clock frequency of various Cortex-M 
processor systems with Altera Cyclone V FPGA. 

 

Speed of the Cortex-M1 processor on a number of FPGA 

devices is listed on table 3 (data from the Cortex-M1 

processor home page, [ref 4]): 
FPGA 

Type 
Example Frequency 

(MHz) 

Area 

(LUTS) 

65 nm Altera Stratix-III, Xilinx Virtex-5 200 1900 

90 nm Altera Stratix-II, Xilinx Virtex-4 150 2300 

65 nm Altera Cyclone-III 100 2900 

90 nm Altera Cyclone-II, Xilinx 

Spartan-3 
80 2600 

130 nm Actel ProASIC3, Actel Fusion 70 4300 Tiles 

Table 3: ARM Cortex-M1 frequency and area 

 

There is also a non technical requirement to consider. If 

the FPGA prototype is to be delivered to an external party, the 

FPGA being used needs to support bit image encryption for IP 

http://www.arm.com/community/partners/display_company/rw/company/altera-corporation/
http://www.arm.com/community/partners/display_company/rw/company/actel-corporation/
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protection purpose. Please check with the ARM processor 

license agreement to see the details of the requirement. 

Instead of using typical FPGA devices, in many 

applications it is also possible to consider alternate solutions 

such as: 

 Microsemi SmartFusion product (based on Cortex-

M3 processor, [ref 9]) 

 Cypress® PSoC®5LP (Cortex-M3, [ref10]) and 

PSoC4 (Cortex-M0 processors, [ref 11]) 

 Triad® Semi’s Mocha Configurable Array (Cortex-

M0 processor-based, [ref 12]) 

These devices contain a Cortex-M processor with 

configurable components including mixed signal peripherals, 

and in many case users can select the required configuration 

using the IDE, without any RTL coding. 

 

IV. FPGA BOARD SELECTION 

Most designers use ready to use FPGA boards instead of 

creating new ones. In addition to the FPGA selection 

considerations mentioned in previous section, these designers 

might also need to consider additional board level features, 

which can affect how quick they can get their system running 

and how their system performs. 

A. Memory System 

In many cases the memory blocks inside the FPGA is not 

enough and therefore it is necessary to have additional 

memory on the FPGA board.  Typically FPGA boards might 

include some of the following types of memories, and each of 

them has pros and cons: 

 
Memory type Pros Cons 

SRAM Easy to integrate with 

simple AHB wrapper. 

Many FPGA boards use 

16-bit async SRAM and 
each access takes 

multiple clock cycles to 

complete, so result in 
slow performance. 

PSRAM Easy to integrate with 

simple AHB wrapper in 
asynchronous mode. 

 

Low cost with large 
memory size. 

Many FPGA boards with 

PSRAM use 16-bit 
interface and each access 

takes multiple clock 

cycles to complete, so 
result in slow 

performance.  

Also PSRAM has slow 

access time when use in 

asynchronous mode. 

ZBT SRAM Fast access time and easy 
to integrate with Cortex-M 

processor with AHB 

wrapper 

Relatively higher cost 

DDR/DDR2 Large memory size. 
 

Low cost 

Need to have AHB DDR 
memory controller 

(additional IP) and high 

access latency. 

Flash memory for 

program storage 

Large memory size. 

 

Low cost 

Slow access time (e.g. 

10MHz). 

Table 4: Commonly used memories for FPGA boards 

 

 

Since the current Cortex-M series processors do not have 

cache memory, use of DRAM or DDR memories can be 

inefficient because these memory devices are designed for 

burst access operations. One possibility is to add a system 

level cache, which increases the SRAM usage inside the 

FPGA and can be complex to design. Simple asynchronous 

SRAM or PSRAM enable simpler integration but the 

performance could still be limited.  

An alternative solution is to use ZBT (Zero Bus 

Turnaround) synchronous SRAM. They are relatively 

expensive, but can be integrated with Cortex-M processor-

based systems using simple bus wrappers, allowing high 

performance (zero wait state accesses) and large memory size 

(e.g. 1MB to 16MB). If it is necessary to run programs from 

ZBT SSRAM, the system can be booted up with a slow flash 

memory, then copy the program image to the ZBT SSRAM 

and then execute from there at full speed. However, when 

doing so unregistered paths between the processor’s bus 

interface and the ZBT SSRAM are present, which could limit 

the maximum clock frequency.  

In the first generation of the ARM Microcontroller 

Prototyping System (MPS, [ref 13]), an FPGA platform 

developed for the Cortex-M series processors, the system can 

run programs from ZBT SSRAM at 50MHz, and the speed 

was limited by another AHB connection between two FPGAs. 

B. Debug Connectors 

Many FPGA board contains a large number of peripheral 

connectors and expansion port connectors. However, most of 

them don’t have any connector specifically designed for 

debugging of ARM systems. There are a number of commonly 

used debug connector arrangements for ARM systems [ref 

14], as shown in figure 1 below: 

20 pin IDC connector
10 pin Cortex debug 

connector

20 pin Cortex debug + 

ETM trace connector

38 pin Mictor 

debug+trace connector

 

Fig. 1. Commonly used debug connectors for ARM systems 
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   These debug connector arrangements are used by various 

debug tool vendors in their debug probe designs, and therefore 

having such debug connector arrangement in the FPGA board 

is highly desirable, as users of the board do not need to waste 

time to create their own debug adaptors. 

C. ARM FPGA Board solution 

In order to help ARM designers to create FPGA prototypes 

easily, ARM has created FPGA boards such as the Cortex-M 

Prototyping System [ref 15] as shown in figure 2. 

 

Fig. 2. Cortex-M Prototyping System 

The Cortex-M Prototyping System is designed to meet 

various typical requirements for Cortex-M series processor-

based hardware development: 
 Larger FPGA (Altera Cyclone 5, 5CEBA7F31C8N with 

approx 150LE) 

 4 x 2MB ZBT SSRAM (32-bit each) for external memory 

system (2 of them arranged as a 64-bit memory). 

 16MB PSRAM (16-bit) for applications with even larger 

memory requirements 

 Various debug connectors as shown in figure 1 

 Broad range of peripherals (Touch screen color LCD, 

GPIO, SPI, I2S audio, VGA, Ethernet, DIP switches, 

buttons, LEDs) 

 Expansion ports (easy to use IDC headers) 

 Bit image encryption support 

 Low cost (US$995) 

The FPGA images and program images are stored on a 

micro SD card on the board, and is programmed to the FPGA 

using a Cortex-M processor-based microcontroller on board 

when the system is powered up.  The USB connection works 

as a mass storage device and allows the FPGA and program 

images to be dragged and dropped to the SD card easily, so 

there is no need to install any special software driver to 

program the board. The board packages include a number of 

FPGA images with various Cortex-M processors, and an 

example system design. More information on this board can 

be found on ARM web site [ref 15]. 
 

V. SYSTEM IP CONSIDERATIONS 

If using products like Altera QSys, Cypress PSoC, 

Microsemi SmartFusion, etc, then the design environment 

already comes with a number of system and peripherals IP and 

possibly there is no need to worry about sourcing these IP. But 

when designing custom FPGA systems at RTL level, then it 

might be necessary to consider what system and peripheral IP 

are needed. 

Many of the hardware designers are experts on peripheral 

IP designs and there are many peripheral IP suppliers in the 

world, so in most cases, peripheral IP is not a major challenge 

to most hardware designers. However, in some applications, 

the bus fabric IP designs can be equally complex if with the 

design contain multiple bus masters or need to deal with 

multiple clock domains in the system. 

On the other hand, when developing a simple system, then 

it might be difficult to justify the cost of licensing system IP.  

However, developing ARM AMBA AHB Lite (Advanced 

High-performance Bus) and APB (Advanced Peripheral Bus) 

infrastructure components could be time consuming and could 

add to project risk because it is not easy to debug bugs in 

system IP using software debugging techniques. 

A piece of great news is that the Cortex-M Prototyping 

System mentioned earlier included an example project based 

on the Cortex-M0 DesignStart (processor IP to be licensed 

separately, [ref 16]). The example system included a subset of 

the bus fabric components in the Cortex-M System Design Kit 

(CMSDK, [ref 8]). So designers can create their simple system 

with AMBA AHB Lite and APB bus protocols quickly. 
When designing a complex system with multiple AMBA 

AHB Lite bus masters and AHB Lite bus segments, licensing 
the full version of the CMSDK is a good solution. The 
CMSDK contains various AMBA AHB Lite bus components 
[ref 9] such as: 

Components Descriptions 

AHB Bus Matrix Configurable AHB Lite interconnect to support 

multiple bus masters and multiple slave port, 

support concurrent accesses 

AHB Master Multiplexer Simple AHB interconnect to support up to three 
AHB Lite bus masters to access a shared AHB 

Lite bus segment 

AHB sync up and sync 
down bridges 

Enable AHB transfers to pass on to another 
AHB bus segment running at a different clock 

speed with is multiple or divide or the 

originating bus segment. 

AHB timing isolation 
bridge 

Useful for timing isolation between two AHB 
bus segment on two FPGAs. 

AHB to AHB 

asynchronous bridge 

For bridge an AHB bus segment to a different 

AHB bus segment at a asynchronous clock 
domain 

AHB to APB bridges Conversion from an AHB bus segment to an 

APB bus. Available in synchronous version and 
asynchronous version. 

AHB upsizer and 

downsizer 

Allows 32-bit and 64-bit AHB bus segments to 

join together. 

Table 4: Some of the AMBA components in the CMSDK that are useful for 
FPGA system designs 

 

    The CMSDK also includes baseline peripherals (e.g. GPIO, 

timer, UART), verification components (e.g. bus protocol 
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checkers) and example systems for Cortex-M series 

processors. 
 

VI. MORE ON THE MEMORY SYSTEM DESIGN 

A. Using internal SRAM blocks 

The easiest way to add memories to a Cortex-M series 

processor in an FPGA design is to use SRAM blocks inside 

the FPGA.  

Unless the Cortex-M1 processor, which has TCM 

integration as part of the processor, is being used, it is 

necessary to connect memories to the processor via an AMBA 

AHB interface. The available methods for creating the 

memories are tool chain specific, but with most of the tools 

ARM engineering team have tried with Altera and Xilinx 

FPGA, a synthesizable AMBA AHB memory block, as listed 

below, can be used: 
Verilog RTL for synthesizable AHB Block RAM 

module AHBBlockRam  #( 

  // -------------------------------------- 

  // Parameter Declarations 

  // -------------------------------------- 

  parameter AWIDTH = 12 

  ) 

  ( 

  // -------------------------------------- 

  // Port Definitions 

  // -------------------------------------- 

  input         HCLK,      // system bus clock 

  input         HRESETn,   // system bus reset 

  input         HSEL,      // AHB peripheral select 

  input         HREADY,    // AHB ready input 

  input   [1:0] HTRANS,    // AHB transfer type 

  input   [1:0] HSIZE,     // AHB hsize 

  input         HWRITE,    // AHB hwrite 

  input  [AWIDTH-1:0] HADDR,     // AHB address bus 

  input  [31:0] HWDATA,    // AHB write data bus 

  output        HREADYOUT, // AHB ready output to S->M mux 

  output        HRESP,     // AHB response 

  output [31:0] HRDATA    // AHB read data bus 

   ); 

  parameter AWT = ((1<<(AWIDTH-2))-1); // index max value 

  // --- Memory Array --- 

  reg     [7:0] BRAM0 [0:AWT]; 

  reg     [7:0] BRAM1 [0:AWT]; 

  reg     [7:0] BRAM2 [0:AWT]; 

  reg     [7:0] BRAM3 [0:AWT]; 

  // --- Internal signals --- 

  reg  [AWIDTH-2:0] haddrQ; 

  wire          Valid; 

  reg     [3:0] WrEnQ; 

  wire    [3:0] WrEnD; 

  wire          WrEn; 

  // -------------------------------------- 

  // Main body of code 

  // -------------------------------------- 

  assign Valid = HSEL & HREADY & HTRANS[1]; 

 

  // --- RAM Write Interface --- 

  assign WrEn     = (Valid & HWRITE) | (|WrEnQ); 

  assign WrEnD[0] = (((HADDR[1:0]==2'b00) && (HSIZE[1:0]==2'b00)) || 

                     ((HADDR[1]==1'b0)    && (HSIZE[1:0]==2'b01)) || 

                     ((HSIZE[1:0]==2'b10))) ? Valid & HWRITE : 1'b0; 

 

  assign WrEnD[1] = (((HADDR[1:0]==2'b01) && (HSIZE[1:0]==2'b00)) || 

                     ((HADDR[1]==1'b0) && (HSIZE[1:0]==2'b01)) || 

                     ((HSIZE[1:0]==2'b10))) ? Valid & HWRITE : 1'b0; 

 

  assign WrEnD[2] = (((HADDR[1:0]==2'b10) && (HSIZE[1:0]==2'b00)) || 

                     ((HADDR[1]==1'b1)    && (HSIZE[1:0]==2'b01)) || 

                     ((HSIZE[1:0]==2'b10))) ? Valid & HWRITE : 1'b0; 

 

  assign WrEnD[3] = (((HADDR[1:0]==2'b11) && (HSIZE[1:0]==2'b00)) || 

                     ((HADDR[1]==1'b1)    && (HSIZE[1:0]==2'b01)) || 

                     ((HSIZE[1:0]==2'b10))) ? Valid & HWRITE : 1'b0; 

 

  always @ (negedge HRESETn or posedge HCLK) 

    if (~HRESETn) 

      WrEnQ <= 4'b0000; 

    else if (WrEn) 

      WrEnQ <= WrEnD;       

 

  // --- Infer RAM --- 

  always @ (posedge HCLK) 

    begin 

      if (WrEnQ[0]) 

        BRAM0[haddrQ] <= HWDATA[7:0]; 

      if (WrEnQ[1]) 

        BRAM1[haddrQ] <= HWDATA[15:8]; 

      if (WrEnQ[2]) 

        BRAM2[haddrQ] <= HWDATA[23:16]; 

      if (WrEnQ[3]) 

        BRAM3[haddrQ] <= HWDATA[31:24]; 

      // do not use enable on read interface. 

      haddrQ <= HADDR[AWIDTH-1:2]; 

    end 

 

`ifdef CM_SRAM_INIT 

initial begin 

    $readmemh("itcm3", BRAM3); 

    $readmemh("itcm2", BRAM2); 

    $readmemh("itcm1", BRAM1); 

    $readmemh("itcm0", BRAM0); 

        end 

`endif 

 

  // --- AHB Outputs --- 

  assign HRESP     = 1’b0; // OKAY 

  assign HREADYOUT = 1'b1; // always ready 

  assign HRDATA    = 

 {BRAM3[haddrQ],BRAM2[haddrQ],BRAM1[haddrQ],BRAM0[haddrQ]}; 

 

endmodule 

 

The SRAM can be initialized with hex file image. 

Since the RAM array is declared as four separate data arrays, 

four hex files need to be generated from a program image. If  

using ARM Development Studio 5 (DS-5) toolchain [ref 18], 

such Verilog HEX files can be generated using the following 

command line [ref 19]: 

 
$> fromelf --vhx --8x4 image.elf –output itcm 

 

This operation results in 4 hex files, (itcm0, itcm1, itcm2, 

itcm3), one for each byte lane. If using other tool chains, a 

single Verilog hex/binary file could be generate from the 

program image, and then use simple programs (e.g. a Perl 

script) to split the image into four hex files. 

Alternatively FPGA specific memory components can be 

instantiated to define the memories. However this is not 

portable as the memory components are FPGA specific.  
 

B. Merging of ROM and SRAM 

In a typical microcontroller device, it is essential to have 
separate ROM (typically flash memories) and RAM (typically 
on chip SRAM). However, in a FPGA device it is possible to 
declare a SRAM block to handle both functions because initial 
values for these SRAM blocks can be defined. 

0x00000000

0x20000000

ROM

RAM

Typical memory map in 

microcontrollers

0x00000000

0x20000000

SRAM

Merging of ROM and 

RAM in a FPGA design

Program image

Data variables, stack, 

heap, etc

Program image

Data variables, stack, 

heap, etc

 

Fig. 3. Merging of ROM and SRAM into one unit in FPGA applications 
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By doing this the system design could be simplied, 

however, this has several effects: 

 If the design is to be ported to silicon later, the 

behavior and the memory map of the system design 

created might not match the system that will be 

productized. 

 For Cortex-M3 and Cortex-M4 processor-based 

systems, the combining of ROM and RAM means the 

memory system works as Von Neumann architecture 

rather than Harvard bus architecture, which can result 

in a small performance penalty, and can also increase 

the interrupt latency. 

Nevertheless, this is a nice technique for many projects. 
 

C. Connecting external memories 

Many FPGA board has asynchronous SRAM or PSRAM 

on board.  If the FPGA board used has 8-bit or 16-bit 

asynchronous SRAM or PSRAM, the CMSDK has a simple 

asynchronous SRAM interface block for AMBA AHB [ref 

20]. This block can also be used to control certain peripherals 

such as an Ethernet controller chip, as in the example design 

in the Cortex-M Prototyping System [ref 15]. This component 

is provided in the example project. 

For other memories such as NOR flash, depending on the 

actual flash memory interface, it might be possible to use the 

same asynchronous SRAM interface component, or potentially 

custom designed flash memory wrapper will have to be 

created. If it is necessary to create new memory wrapper 

design, the CMSDK memory interface component could still 

be a good starting point.  For flash programming, most of the 

FPGA board vendors provide their own utilities to handle this.  

However, running code from flash memories can limit the 

performance of the system because: 

 The access speeds of the flash memories are typically 

quite slow (around 10MHz). So it might be necessary 

to insert quite a few wait states for each memory 

access. 

 The flash memories on third parties FPGA boards are 

usually either 8-bit or 16-bit, so for each 32-bit bus 

transfer, the transfer has to be break down into 2 or 4 

memory accesses. 

VII. OTHER DESIGN CONSIDERATIONS 

A. Clocks 

The clocking arrangement of the Cortex-M series 

processors is fairly simple. In simple single processor systems 

there are up to two clock domains for Cortex-M0 and Cortex-

M0+, and 4 clock domains for Cortex-M3 and Cortex-M4 

processors: 

Cortex-M0/M0+

Processor core

Debug 

slave bus 

port

Serial Wire / 

JTAP DAP 

module

Memory system, 

peripherals

Debug 

Interface
System

 

Fig. 4. Clock domains for Cortex-M0 and Cortex-M0+ processors 

Cortex-M3/M4

Processor core

Debug 

busSerial Wire / 

JTAP debug 

port module

Debug 

Access 

Port

Trace Port 

Interface Unit 

(TPIU)

Trace 

bus

Memory system, 

peripherals

Trace 

port

Debug 

Interface

Debug 

bus
System

Trace 

interface

 

Fig. 5. Clock domains for Cortex-M3 and Cortex-M4 processors 

    Some of the clock domains can have multiple clock inputs 

to allow clock gating implementation. Although the design 

have Cross Clock Domain (CDC) handling logic such as 

synchronizers and handshaking logic, it is still necessary to 

make sure the FPGA synthesis setup declares the clock 

sources as asynchronous. Please refer to FPGA tool 

documentation for details. 

    If it is necessary to have some parts of the memory systems 

or peripheral bus running at a different clock speed, some of 

the bus bridge components in the CMSDK would be useful for 

such applications. 

In order to reduce power consumption, the ARM Cortex-M 

processors support clock gating options (Verilog parameter). 

Depending on the FPGA tools being used it might be 

necessary to replace the clock gating cells with FPGA specific 

code (e.g. clock switches). In some cases the use of clock 

gating option can affect the maximum clock frequency and 

might lead to issues such as signal routing problem, or could 

fail to complete the compilation due to running out of clock 

switches on the device. 
 

B. Reset 

Typically a simple Cortex-M processor-based system has 

two reset types: Power on Reset and system reset.  The 

difference is that system reset does not reset the debug logic in 

the processor.  The Cortex-M series processors have multiple 

reset inputs, but most microcontroller devices only have one 

reset pin because the system reset can be generated internally 

using a “System Reset Request” - from a processor output 

signal called SYSRESETREQ. 
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Cortex-M

Processor core

Power-on / 

Debug reset

System 

Reset

Reset 

Synchronizer

External 

reset source

Reset 

generator

Reset 

generator

Reset 
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Fig. 6. Common reset arrangement for Cortex-M Processors 

    The SYSRESETREQ is required for debug tool to reset the 

system. Do not reset the whole system with this signal as the 

debug tool can get confused and disconnect from the target 

processor. In addition to SYSRESETREQ, it is also possible 

to generate system reset using a reset pin from debug 

connector. This is optional and requires one more reset input 

pins. 

    Some of the FPGA boards do not have a reset button, but a 

user push button can be used as reset. Alternatively a simple 

counter can be created to generate reset pulse. A number of 

FPGA project examples (e.g. Terasic DE0 board) use a simple 

counter. This solution works for FPGA because the flip-flops 

reset to 0 by default, but this does not necessary work in 

ASIC/SoC designs. 

    Finally, do not forget to add reset synchronizers for each 

reset signals. In some cases it might also be necessary to 

instantiate buffers for reset signals. 
 

VIII. CONCLUSIONS 

In general, prototyping of Cortex-M processor-based 

systems on FPGA is quite straight forward. Various system IP 

blocks can be licensed from numerous sources including ARM 

to help with meeting various system design requirements. 

Tailor made FPGA boards specifically designed for the 

Cortex-M processor prototyping are available from ARM, and 

various system IP solutions are also available. For example, 

the ARM Cortex-M System Prototyping System is a very 

effective solution which meets various design requirements for 

Cortex-M processor-based system prototyping, and includes a 

subset of CMSDK components to make it easier to start. 
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