
AN1215

VA10800/VA10820

VORAGO VA108x0 GCC IDE application note
June 11, 2018 Version 1.0

Abstract

ARM has provided support for the GCC (GNU C compiler) and GDB (GNU DeBug) tools
such that it is now a very reliable and often used development environment for ARM Cortex-
M based MCUs. This application note covers all the steps necessary to get the suite running
specifically with the VA108x0 MCU from VORAGO. This includes:

• Instructions on how to install the Eclipse, GCC and J-Link GDB server packages,
• Information on unique linker (*.LD), make (Makefile) and startup (*.S) files
• Example project demonstrations

During the development, several challenges were encountered with download, options and
tool nuances. These are addressed in the frequently asked questions. It is highly
recommended to review this list if you have plans to “open-the-hood” and modify linkers,
make files, startup or other components in the environment.

Table of Contents

1 Overview of GCC and GDB development environment... 2
2 Installing GCC and conducting a test run .. 4
3 Installing Eclipse CDT ... 6
4 Installing Segger J-LINK GDB server .. 7
5 Downloading an Example VA108x0 project .. 8
6 Introduction to Eclipse ... 8
7 Unique files for VA108x0 – make, startup and linker files .. 10
8 Build and debug first project .. 12
9 Build and debug the full REB1 BSP project.. 14
10 Creating your own project ... 15
11 Installing OpenOCD (On-chip Debugger)... 15
12 Alternative probe - Black Magic Probe (BMP) .. 17
13 Programming SPI NVM for the VA108x0 ... 19
14 Conclusions ... 19
15 Common questions and issues .. 19
16 Other Resources .. 20

AN1215 – VA108x0 GNU GCC Application Note

2

1 Overview of GCC and GDB development environment

Eclipse is an integrated development environment that has special support for C
programming. Eclipse plug-ins are used to access the compiler and debugger functions.
Figure 1 shows a high-level interconnect diagram of all the pieces used. The following
sections provide more depth into each block.

Figure 1- Development environment interconnect diagram

1.1 GCC

 The GNU Compiler Collection includes front ends for C, C++, Objective-C, Fortran, Ada,
and Go, as well as libraries for these languages (libstdc++,...). The home URL is:

https://gcc.gnu.org

There is extensive documentation available for GCC on-line at:
https://gcc.gnu.org/onlinedocs/. This information can sometimes come in very handy but
by following the steps listed in this application note, the need to read the GCC
documentation should be limited.

ARM has invested time and effort in improving the compiler specific to the ARM
architectures. The ARM version of GCC has been proven on many MCUs and improved
over the last 15 years. Information on this development and access to the source code can
be found at:

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm.

Eclipse IDE

Debug
interface

Register View

Text editor

Project
manager

Build manager

MCU
(VA108xx)

JTAG Adapter
(J-Link OB)

GDB

GCC

GDB or
OpenOCD server

GNU toolchain

AN1215 – VA108x0 GNU GCC Application Note

3

Figure 2 provides a summary of the flow and processing of information to create an
executable file that the debugger can utilize. ARM has created a software interface
standard known as “CMSIS”, Cortex-M Software Interface Standard. This has multiple
layers and a wide breadth but in general, it offers an API to lower level drivers for
peripherals like UART, SPI and I2C. This is intended to make code very portable from one
ARM based processor to another.

Figure 2 - Summary of information processing to create an executable file

1.2 GDB - GNU Project Debugger

GDB is intended to provide a powerful user interface for debugging software on the target
MCU. It includes the following capabilities:

- Download executable files to either RAM or NVM on the target MCU
- Start program from any program counter location
- Stop program execution by the use of break points or when a STOP instruction is

executed
- Examine and modify register and memory contents

More information can be found at: https://www.gnu.org/software/gdb/

In order to support different JTAG / SWI probes, a GDB client server concept has been
implemented. When the “debug” command is entered in Eclipse, the GDB client is
launched. For our case, the client will be “arm-none-eabi-gdb”. A port number is specified
in the debug configuration Debugger menu. A PC will direct the communication traffic to a
separate task controlling the probe. For the Segger J-Link, the port ID is 2331. The

Main.c file,
*.c files,

*.h files, &
Va108xx_startup.s

Compiler

Assembler

Linker
Executable(s) with
debug info (.elf,

.bin, .hex)

CMSIS
Libraries

- *.c files
- Directories for .h files

- Name,
- Format and
- Types of output files

- Compiler
- Compiler options
- Assembler
- Assembler options
- Target CPU

- Compiler
- Compiler options
- Assembler
- Assembler options
- Target CPU

“Makefile” (A text file) calls out all of the above information in green

AN1215 – VA108x0 GNU GCC Application Note

4

OpenOCD port ID is 3333. The GDB server can be started via a script from Eclipse or
separately prior to entering the debug command.

As a side note, the fish sketch often accompanying GDB information is in remembrance of
Fred Fish (November 4, 1952 – April 20, 2007) and his significant contributions to the GDB
effort.

Figure 3 – GDB home page with tribute to Fred Fish.

2 Installing GCC and conducting a test run

ARM has taken the basic GCC suite and tailored it to the ARM architectures. Access to the
latest version can be found at:

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

The name of the .exe file should look something like "gcc-arm-none-eabi-X_X-XXXXX... .exe".
See below for screen capture of the download site. Newer versions may be available when
you visit the site.

AN1215 – VA108x0 GNU GCC Application Note

5

Figure 4 - ARM GNU download site screen capture

Double click on the *exe file and click through the install instructions. Make certain that you
click the “Add path to environment variable”. In order for Eclipse to access the GCC
software, the global path must be changed to include the folder containing GCC
executables.

2.1 GCC test run

Open a command prompt (CMD) window and enter the following command to show the
GCC version information and confirm it was installed: “arm-none-eabi-gcc -v”. The below
figure shows an example screen capture.

AN1215 – VA108x0 GNU GCC Application Note

6

Figure 5 - Command prompt invoking GCC and showing the version information.

The GDB client software was also installed with the GCC download. You can confirm this by
entering: “arm-none-eabi-gdb -v” at a command prompt.

3 Installing Eclipse CDT

Eclipse is a free IDE (integrated debug environment) that supports several different
programming languages. For our purpose, we will focus on the CDT (C/C++ Development
tooling) version. Please visit the below URL for access to the latest version.

https://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/oxygen3

Figure 6 - Eclipse download site screen capture

Download and unzip Eclipse for your platform. You will want to remember the folder
location where you extracted the files. We used Windows 64-bit and placed them in a
folder called “c:/EclipseCDT_Oxygen” but any folder name should work.

AN1215 – VA108x0 GCC IDE Application Note

7

Eclipse requires Java runtime environment, so you will have to also download JRE from
http://java.com. After downloading the “jre-8u171-windows-x64.exe” run the program and
click the “change destination” box. Before starting the install, create a folder “jre” in the
“eclipse” folder created in the above paragraph. Change the install location to the “jre”
folder just created.

Alternatively, it is possible to modify the eclipse.ini file to point to the JRE path location. In
that case, use the default location of c:\ProgramFiles\Java\jre1.8.0_171.

Detailed information on CDT can be found at:
https://wiki.eclipse.org/CDT/User/NewIn90#Release

4 Installing Segger J-LINK GDB server

Since the REB-1 development board comes with J-LINK OB, we are using the J-LINK GDB
server to route information from the GDB tool to the MCU. The JLINK GDB server is part of
the larger J-LINK download available at: https://www.segger.com/jlink-software.html

Select Software and documentation pack for Windows V6.10n [23,162 KB]. If a later
version is available, please use it.

Figure 7 - Segger J-Link download site screen capture

AN1215 – VA108x0 GCC IDE Application Note

8

5 Downloading an Example VA108x0 project

Two projects are available on GitHub: Blink_only and the full REB1 BSP. They can be found
at: https://github.com/Voragotech

Download both projects and put them in the same directory. For our example, we used:
c://Vorago_projects. The next section will access these projects through Eclipse.

6 Introduction to Eclipse

The organization of a project is somewhat unique in Eclipse and deserves a quick
explanation. Eclipse uses a “workspace” concept which groups together the following in a
folder:

1. One or more related projects

2. Some configuration pertaining to all these projects in metadata

3. Some settings for Eclipse itself

This happens by creating a directory/folder and storing files in it that provides Eclipse this
information when the workspace is opened or “switched” to. See below for the contents of
an example Workspace folder.

Figure 8 - Contents of Workspace directory

Eclipse makes it easy to create a new workspace and to import an existing project. To do
this with Eclipse already launched and a Workspace active, pull down the following menu:
File -> New -> Makefile Project with Existing Code. You should get a screen similar to
Figure 8 below. Unclick the C++ box and select “Cross GCC”.

AN1215 – VA108x0 GCC IDE Application Note

9

Figure 9 - Eclipse New -> Makefile Project with Existing Code screen capture

The workspace is now associated with the referenced project and you can start your code
development from a solid starting point.

6.1 Eclipse first time use

Open Eclipse by double clicking on the eclipse.exe file that was downloaded per instructions
in Chapter 4. After a few seconds a menu will appear asking for a workspace. Point to
../VA108X0_GCC_project/Workspace-VORAGO-REB1-blinkonly folder downloaded in
section 5. Note that once Eclipse has been used, it will remember the last used Workspace
and will go directly to it. If a prompt for a Workspace is not shown, use the “file” pulldown
menu and select “switch workspace”, then proceed to the above-mentioned workspace.

AN1215 – VA108x0 GCC IDE Application Note

10

You should see something similar to the below screen capture.

Figure 10 - Blink_only project screen capture

6.2 Updates and Installing New Software

The native download of Eclipse does not support the “GDB Hardware Debugger”
Configuration and an extra step is necessary to enable GDB use.

To make certain Eclipse is using the latest tools for C development it is recommended that
you pull in the latest updates. This is done using the following pull-down menu: Help ->
Check for update.

For some versions of Eclipse such as Mars, it might be necessary to use the install new
software option instead of the update option. In that case, install updates for CDT. This will
enable the creation of new GDB debug configurations.

7 Unique files for VA108x0 – make, startup and linker files

Inside each project are three text files that determines which files are included in the project,
how the MCU boots and which memory space the program should use. Each file can be
viewed and modified in the eclipse environment using the project explorer. The following
three sections describes these files.

7.1 Calling out project options in “Makefile”

The “makefile” is normally >200 lines long that contains the files and options needed to
build a project. Included in this list are:

AN1215 – VA108x0 GCC IDE Application Note

11

- Compiler to be used
- Target device CPU information. i.e. cortex-m0.
- Linker file to be used
- List of *.c files to include
- Directories to find the *.h files.
- Output file name and list of formats i.e. .hex, .bin, .elf.

We have provided a makefile for the two example projects. It resides in the root directory
of the project. If you decide to add source files or add directories for .h files, you will
probably need to modify this file.

7.2 Defining reset / interrupt vectors and initializing MCU before main{} is

called – “startup_VA108x0.S”

Explicit definitions for the reset and interrupt vectors are called out in this file. The Cortex-
M0 has 16 core related vectors and 32 User interrupt vectors. IRQ[0:31]. VORAGO has
designated the first 12 interrupt vectors to be specific to a specific peripheral on the device
such as SPI0. This is not a convention that must be followed but for ease in understanding
these were named with the peripheral assigned to the vector.

The reset handler and the default interrupt handler are also included in the
startup_VA108x0.s file. This is a text file with assembly language instructions and directives.
Prior to the main.c code executing structure information is moved from ROM space to RAM
space. On some MCUs it is necessary to have some parameters setup and a system_init
routine called. Commonly the clock must be configured as the first step. The VA108x0
device has a straightforward clock system that does not need to be setup and the reset
handler moves a section of ROM data to RAM, initializes the first 4 registers then jumps to
the main routine.

7.3 VA108x0.ld

The linker file provides information that allows the build process to attach object file
information to specific addresses in the MCU. The linker file is a text file that can be easily
modified. It contains directives for certain pieces of information to be grouped together such
as data and text. The linker file has labels that are used by the startup.s file to move
information from ROM to RAM.

AN1215 – VA108x0 GCC IDE Application Note

12

For first time GCC users, it is recommended that the linker file be left untouched. After the
environment is better understood, changes to the linker file can be attempted.

8 Build and debug first project

As with the time-honored tradition of other MCU evaluation kits the first project will be a
simple LED blink routine. The project is located in the folder of the downloaded
VA108x0_GCC.7z file. Follow the steps in the next three sections to launch, build and
execute the project.

8.1 Start Eclipse and load the project

Find the directory with Eclipse Oxygen and double click on the eclipse.exe file. After a few
moments, Eclipse should open and ask for a “workspace”. Please navigate to the
“Wksp_VOR_Blink” directory and hit the OK button.

Figure 11 - Eclipse Workspace Launch screen capture

8.2 Build the project

The “blink_only” project has a build configuration file. It is possible to either use the pull-
down menu (file -> build ->) or click on the build icon (Hammer icon) as shown below.

AN1215 – VA108x0 GCC IDE Application Note

13

Figure 12 - Blink_only project "C" window capture

8.3 Download and run the program

The “blink_only” project has debug configuration file called
“vorago_blink_only_JLINK_GDB”. However, before invoking the debugger, please have
the REB1 board attached to the PC USB port and start the Segger JLink GDB server by
navigating to the Windows Explorer -> Segger ->J-Link GDB Server V6.30i. Enter “Cortex-
M0” if prompted for a target device and hit the OK button.

Figure 13 - Invoking the debugger screen capture

AN1215 – VA108x0 GCC IDE Application Note

14

Figure 14 - Debug screen capture for Blink_only project

9 Build and debug the full REB1 BSP project

9.1 Start Eclipse and load the project

Find the directory with Eclipse Oxygen and double click on the eclipse.exe file. After a few
moments, Eclipse should open and ask for a “workspace”. Please navigate to the
“VA108x0_GCC/Wksp_VOR_REB1” directory.

If Eclipse was already started, use the “File -> Switch Workspace” menu instead of restarting
Eclipse.

9.2 Build the project

The “Prj_VOR_REB1” project has a build configuration file, “default”. This file calls out the
GCC compiler and has library include paths. It is possible to either use the pull-down menu
(Project -> Build All) or click on the build (hammer) icon to start the build process.

9.3 Download and run the program

The “Prj_VOR_REB1” project has debug configuration file called “Prj_VOR_REB1”. This file
calls out which file to download, the debugger hardware and startup options. However,
before launching the debugger, please have the REB1 board attached to the PC USB port
and start the Segger JLink GDB server by navigating to the Windows Explorer -> Segger ->J-
Link GDB Server V6.30i. Enter Cortex-M0 is prompted for a target device and hit the OK
button.

AN1215 – VA108x0 GCC IDE Application Note

15

10 Creating your own project

Instead of starting from scratch to create your project, it is recommended to start from the
REB1 project. One way of doing this is to copy the entire Wksp_VOR_REB1 folder and
renaming a copy. Also go to the Prj_VOR_REB folder and rename it. This provides a
working file structure to start from.

11 Installing OpenOCD (On-chip Debugger)

Note: If you are not using an OpenOCD based setup, you can skip this section.

OpenOCD is standard to provide common debug and programming commands through an
array of probes. OpenOCD can create a GDB server with port ID = 3333.

There is an organization that supports OpenOCD with a URL: http://openocd.org. The
download location for the server software is:
https://sourceforge.net/projects/openocd/files/

Figure 15 - OpenOCD download site screen capture

AN1215 – VA108x0 GCC IDE Application Note

16

11.1 Instructions for using the OpenOCD

There is a plug-in for OpenOCD. See: https://gnu-mcu-eclipse.github.io/debug/openocd/.
By following the steps, it is possible to create a debug configuration which will configure all
the specifics of the probe, GDB server and OpenOCD.

11.1.1 Adding OpenOCD to path environment

When GCC was loaded, there was an option to have the Environment path updated. For
OpenOCD, this must be done manually. In Windows 10, open a Windows Explorer screen
and right click on “This PC”. Click on “Properties”.

Figure 16 - System variable change navigation procedure

AN1215 – VA108x0 GCC IDE Application Note

17

Figure 17 - System variable change -> path edit

Select the “Path” line and hit the “Edit” button. Add the OpenOCD binary directory which
should look similar to ..\openocd-0.6.0\bin-x64”.

12 Alternative probe - Black Magic Probe (BMP)

There are several low-cost (<$100) JTAG probes that can be used with GDB. Information
on one of the more popular ones, Black Magic Probe (BMP), can be found here:
https://github.com/blacksphere/blackmagic/wiki.

A unique debug configuration (“vorago_blink_with_BMP”) has been made for the Black
Magic probe for the “blink_only” file. Instead of using the “remote target” with port
address, BMP uses a virtual communication port (USB CDC ACM). There is no need to start
a GDB server prior to starting a debug section. The following three screen captures show
the debugger setup menus.

AN1215 – VA108x0 GCC IDE Application Note

18

Figure 18 - Main debug configuration menu

Figure 19 - Debugger debug configuration menu

Figure 20 - Startup debug configuration menu

AN1215 – VA108x0 GCC IDE Application Note

19

Need to add “connect 1” on line below “monitor jtag_scan”.

13 Programming SPI NVM for the VA108x0

There is currently there is no programming support for the GDB environment. We expect to
offer this support in the future.

14 Conclusions

This application note has provided all the steps necessary to install and demonstrate GCC

using the Eclipse IDE. Two examples were provided for simple and complex projects. You

should be able to develop your own projects using the foundation provided.

15 Common questions and issues

1. In Eclipse what is the difference between a workspace and a project?

1a: A workspace is the folder / directory containing information in metadata format
for the entire project. This includes the path to the project files. A project is a
collection of files including: 8*.c, *.h, startup, linker and make files. The project can
be stored in the workspace directory or outside of it. Different companies like to
organize their projects differently depending upon shared libraries and re-use
policies. To reduce confusion, it is recommended that the folder name have useful
information with either “workspace” or “project” being part of the name.

2. When starting a new project, should I import an older one or use “new - > makefile
from existing“?

2a. Starting new project from scratch can be a long and laborious task. Copying the
entire workspace of the REB1 project and renaming it is a good way to start.
Otherwise using the “new -> makefile from existing” option is the second option.

AN1215 – VA108x0 GCC IDE Application Note

20

3. Inside the debug window, when and why use “relaunch”?

3a. If debugging code included modifying memory or registers, it normally a good
idea to reset the part and to reload the program periodically. The relaunch
command will reset the MCU and download the active project to Instruction RAM on
the VA108x0.

4. Can MCU peripheral registers be viewed by the debugger?

4a - This feature has not been implemented at this time. VORAGO plans on adding
this feature in the near future.

5. Is it possible to program SPI memory from the debugger?

5a - Ans: Yes this is possible but support for it is not available at this time. VORAGO
plans on adding this feature in the near future.

6. The MCU will not respond to any interrupt requests like it had in previous debug

sessions. What is going on?

6a. The MCU can react to a hard fault problem in a way that is not recoverable until
the unit is powered down. To check for this condition, view location 0xE000ED04. If
the least significant 11 bits are 0x003, the device is in this condition. Most likely the
cause of this is code trying to access invalid memory space. To correct the condition
a POR reset is required.

7. I have modified the source code in the edit window, but the compiled output does not
reflect the changes. Why is that?

7a. Eclipse will always use the saved files and not the version you are viewing. Save
the file and rebuild the project to remedy this issue.

16 Other Resources

AN1215 – VA108x0 GCC IDE Application Note

21

VORAGO VA108x0 programmers guide & VORAGO MCU products:
http://www.voragotech.com/VORAGO-products

VORAGO Application notes: http://www.voragotech.com/resources

VORAGO VA108x0 REB1board user guide: Part of Board Support Package (BSP)
http://www.voragotech.com/products/reb1

MCU on Eclipse – Excellent reference for Eclipse
https://mcuoneclipse.com/category/eclipse-2/

Revision log:

June 11, 2018 – Initial release

