
1 PUBLIC

Open Source Core Toolchains

ARM Status Update

Matthew Gretton-Dann

March 2015

2 PUBLIC

Important Note: This session is being recorded

and will be made publicly available

3 PUBLIC

Open Source Core Toolchains

ARM Status Update

Matthew Gretton-Dann

March 2015

4 PUBLIC

 Introduction

 GNU Toolchain

 Progress since January 2015

 Plans for mid 2015

 LLVM Update

 Progress since January 2015

 Plans for mid 2015

 LLVM Highlights

Agenda

5 PUBLIC

 Explain what ARM plans to work on, and what its current priorities are:

 However, things are likely to change – so:

 We will not achieve all this in the next six months,

 And there will be other things we do do.

 This is an update of the presentation given just before the end of 2014

 If your plans include the same topics, or work in the same areas

 Come and talk to us – we should work together

 Preferably this conversation should happen in the appropriate upstream communities.

 If you feel that we’re doing the wrong thing

 Come and talk to us – we’re happy to work out a better way forward

 If possible use the public mailing lists & bug databases to report issues

 This is the best place to have the conversation about best ways forward.

Purpose of this Presentation

6 PUBLIC

 Support the Architecture & Cores

 Teams are involved in development of new cores and architecture extensions

 We will not discuss those here

 However, we plan to upstream functionality as soon as possible after public announcements

 Support the Community

 Improve Performance:

 Focus on Cortex-A57 performance improvement

 Focus on a range of benchmarks, including industry standard CPU benchmarks.

 We analyze benchmarks both:

◦ for improvements we can make to the toolchains; and

◦ to note any regressions and get them fixed in co-operation with the community

Overview of Goals for 2015

7 PUBLIC

 Continuing to help prepare GCC 5 for release

 A-Profile

 Scheduling improvements for Cortex-A57

 Basic Cortex-A72 tuning

 LDP / STP merging

 Improved Neon intrinsics support along with community

 Simplify a number of the default string routine implementations in glibc

 R/M-Profile

 Thumb-1 Prologue/Epilogues in RTL

 Implemented aeabi_memclr/aeabi_memset/aeabi_memmov in Newlib

 Fixed ABI support for HW vs SW floating-point

GNU Toolchain
Progress in early 2015

8 PUBLIC

 Help complete GCC 5 release

 PR62173 – ivopts in GCC

 Improves lbm in spec2006

 Cost model improvements for Cortex-A53 / Cortex-A57 (AArch64)

 float16 support in GCC

 Improve CSEL code generation

 Finish prologue / epilogue code generation improvements

 ARMv8.1-A Architecture support

 Implement floating-point conversions for M-Profile in libgcc

 Use tree matching to optimize CRC functions on Cortex-M7

 Improved fdiv & fmul instruction selection on Cortex-M series

GNU Toolchain
Next steps

9 PUBLIC

 Cortex-A72 basic support

 Support for thread_local in AArch64

 Re-enables AArch64 bootstrap after LLVM started using thread_local.

 Issues related to building AOSP with LLVM

 AArch32 large dynamic stack re-alignment fixed.

 AArch64 dynamic stack re-alignment is in progress.

 AArch32 build attribute generation - now believed to be fully ABI compliant

 Improve unrolling heuristics for AArch64 – improves performance

 Improved support for ARMv7-A and ARMv7-M

 We believe encoding/decoding and assembling/disassembling instructions in LLVM MC is now

complete for ARMv7-A & ARMv7-M.

LLVM Toolchain
Progress since January 2015

10 PUBLIC

 ARMv8.1-A architectural support

 Issues related to building AOSP with LLVM:

 Stack size usage optimization ("lifetime markers")

 Vectorization improvements:

 Make use of structure load/store instructions in AArch32 and AArch64.

 Enable vectorization of more min/max idiomatic code.

 Discussions on improving both recursive inlining and the heuristics in the top-down

inliner.

 New loop rerolling pass added

 Not yet enabled by default

LLVM Toolchain
Currently in Progress

11 PUBLIC

 New float2int pass: turn floating point into fixed point arithmetic.

 PBQP register allocator: various bug fixes and optimizations.

 Aligning objects so that higher-performing mem* operations are possible

 Thumb-1 done

 A32/T32 ongoing

 Unrolling heuristics tuned for AArch32

LLVM Toolchain
Currently in Progress

12 PUBLIC

 Further performance tuning

 Specifics to be decided based on benchmark analysis

 Set up a public performance-tracking AArch64 Linux BuildBot.

 Issues related to building AOSP with LLVM:

 See https://llvm.org/bugs/show_bug.cgi?id=21420

 Improve testing for ARMv6-M and Thumb-1

 Both in-house and public

 Fix issues found

LLVM Toolchain
Next to be looked at

https://llvm.org/bugs/show_bug.cgi?id=21420
https://llvm.org/bugs/show_bug.cgi?id=21420

13 PUBLIC

LLVM Toolchain – highlight 1: fully passing MC Hammer for v7

 MC Hammer test-suite performs exhaustive testing of

MC-layer correctness versus a

reference implementation. See Euro-LLVM 2012

presentation by Richard Barton.

 Checks correctness of encoding, decoding, assembling &

disassembling functionality.

 Over the past few years – we’ve been

gradually fixing corner case bugs.

 Late last year, we’ve made MC Hammer testing fully pass

for the v7-A and v7-M variants of the ARM architecture.

AArch64 was already passing.

 Result: This functionality in LLVM-MC can be trusted and

built upon.

decode
LLVM

MCInst

encode

assemble

disassemble

Bit pattern

0xE2910001

Assembly

ADDS r0, r1, #1

14 PUBLIC

 LLVM’s autovectorizer currently does not

support vectorizing strided accesses.

 We’re currently discussing the design to allow

this in LLVM, ultimately leading to autovectorizing

code similar to the example on this slide.

LLVM Toolchain – highlight 2: auto-vectorizing structure LD/ST

for (int i = 0; i < len; ++i)

 out[i] = in[i].r * 0.3f +

 in[i].g * 0.59f +

 in[i].b * 0.11f;

r

0

g

0

b

0

r

1

g

1

b

1

r

2

g

2

b

2

r

3

g

3

b

3

r

4

g

4

b

4

r

5

g

5

b

5

r

6

g

6

b

6

r

7

g

7

b

7

r

8

g

8

b

8

r

9

g

9

b

9

r

A

g

A

b

A

r

B

g

B

b

B

r

C

g

C

b

C

r

D

g

D

b

D

r

E

g

E

b

E

r

F

g

F

b

F

v19
r

0

r

1

r

2

r

3

r

4

r

5

r

6

r

7

r

8

r

9

r

A

r

B

r

C

r

D

r

E

r

F

v20
g

0

g

1

g

2

g

3

g

4

g

5

g

6

g

7

g

8

g

9

g

A

g

B

g

C

g

D

g

E

g

F

v21
b

0

b

1

b

2

b

3

b

4

b

5

b

6

b

7

b

8

b

9

b

A

b

B

b

C

b

D

b

E

b

F

in:

ld3 {v19.16b-v21.16b}, [x7]

* 0.3f

* 0.59f

* 0.11f
+

out

