
1 PUBLIC

Open Source Core Toolchains

ARM Status Update

Matthew Gretton-Dann

March 2015

2 PUBLIC

Important Note: This session is being recorded

and will be made publicly available

3 PUBLIC

Open Source Core Toolchains

ARM Status Update

Matthew Gretton-Dann

March 2015

4 PUBLIC

 Introduction

 GNU Toolchain

 Progress since January 2015

 Plans for mid 2015

 LLVM Update

 Progress since January 2015

 Plans for mid 2015

 LLVM Highlights

Agenda

5 PUBLIC

 Explain what ARM plans to work on, and what its current priorities are:

 However, things are likely to change – so:

 We will not achieve all this in the next six months,

 And there will be other things we do do.

 This is an update of the presentation given just before the end of 2014

 If your plans include the same topics, or work in the same areas

 Come and talk to us – we should work together

 Preferably this conversation should happen in the appropriate upstream communities.

 If you feel that we’re doing the wrong thing

 Come and talk to us – we’re happy to work out a better way forward

 If possible use the public mailing lists & bug databases to report issues

 This is the best place to have the conversation about best ways forward.

Purpose of this Presentation

6 PUBLIC

 Support the Architecture & Cores

 Teams are involved in development of new cores and architecture extensions

 We will not discuss those here

 However, we plan to upstream functionality as soon as possible after public announcements

 Support the Community

 Improve Performance:

 Focus on Cortex-A57 performance improvement

 Focus on a range of benchmarks, including industry standard CPU benchmarks.

 We analyze benchmarks both:

◦ for improvements we can make to the toolchains; and

◦ to note any regressions and get them fixed in co-operation with the community

Overview of Goals for 2015

7 PUBLIC

 Continuing to help prepare GCC 5 for release

 A-Profile

 Scheduling improvements for Cortex-A57

 Basic Cortex-A72 tuning

 LDP / STP merging

 Improved Neon intrinsics support along with community

 Simplify a number of the default string routine implementations in glibc

 R/M-Profile

 Thumb-1 Prologue/Epilogues in RTL

 Implemented aeabi_memclr/aeabi_memset/aeabi_memmov in Newlib

 Fixed ABI support for HW vs SW floating-point

GNU Toolchain
Progress in early 2015

8 PUBLIC

 Help complete GCC 5 release

 PR62173 – ivopts in GCC

 Improves lbm in spec2006

 Cost model improvements for Cortex-A53 / Cortex-A57 (AArch64)

 float16 support in GCC

 Improve CSEL code generation

 Finish prologue / epilogue code generation improvements

 ARMv8.1-A Architecture support

 Implement floating-point conversions for M-Profile in libgcc

 Use tree matching to optimize CRC functions on Cortex-M7

 Improved fdiv & fmul instruction selection on Cortex-M series

GNU Toolchain
Next steps

9 PUBLIC

 Cortex-A72 basic support

 Support for thread_local in AArch64

 Re-enables AArch64 bootstrap after LLVM started using thread_local.

 Issues related to building AOSP with LLVM

 AArch32 large dynamic stack re-alignment fixed.

 AArch64 dynamic stack re-alignment is in progress.

 AArch32 build attribute generation - now believed to be fully ABI compliant

 Improve unrolling heuristics for AArch64 – improves performance

 Improved support for ARMv7-A and ARMv7-M

 We believe encoding/decoding and assembling/disassembling instructions in LLVM MC is now

complete for ARMv7-A & ARMv7-M.

LLVM Toolchain
Progress since January 2015

10 PUBLIC

 ARMv8.1-A architectural support

 Issues related to building AOSP with LLVM:

 Stack size usage optimization ("lifetime markers")

 Vectorization improvements:

 Make use of structure load/store instructions in AArch32 and AArch64.

 Enable vectorization of more min/max idiomatic code.

 Discussions on improving both recursive inlining and the heuristics in the top-down

inliner.

 New loop rerolling pass added

 Not yet enabled by default

LLVM Toolchain
Currently in Progress

11 PUBLIC

 New float2int pass: turn floating point into fixed point arithmetic.

 PBQP register allocator: various bug fixes and optimizations.

 Aligning objects so that higher-performing mem* operations are possible

 Thumb-1 done

 A32/T32 ongoing

 Unrolling heuristics tuned for AArch32

LLVM Toolchain
Currently in Progress

12 PUBLIC

 Further performance tuning

 Specifics to be decided based on benchmark analysis

 Set up a public performance-tracking AArch64 Linux BuildBot.

 Issues related to building AOSP with LLVM:

 See https://llvm.org/bugs/show_bug.cgi?id=21420

 Improve testing for ARMv6-M and Thumb-1

 Both in-house and public

 Fix issues found

LLVM Toolchain
Next to be looked at

https://llvm.org/bugs/show_bug.cgi?id=21420
https://llvm.org/bugs/show_bug.cgi?id=21420

13 PUBLIC

LLVM Toolchain – highlight 1: fully passing MC Hammer for v7

 MC Hammer test-suite performs exhaustive testing of

MC-layer correctness versus a

reference implementation. See Euro-LLVM 2012

presentation by Richard Barton.

 Checks correctness of encoding, decoding, assembling &

disassembling functionality.

 Over the past few years – we’ve been

gradually fixing corner case bugs.

 Late last year, we’ve made MC Hammer testing fully pass

for the v7-A and v7-M variants of the ARM architecture.

AArch64 was already passing.

 Result: This functionality in LLVM-MC can be trusted and

built upon.

decode
LLVM

MCInst

encode

assemble

disassemble

Bit pattern

0xE2910001

Assembly

ADDS r0, r1, #1

14 PUBLIC

 LLVM’s autovectorizer currently does not

support vectorizing strided accesses.

 We’re currently discussing the design to allow

this in LLVM, ultimately leading to autovectorizing

code similar to the example on this slide.

LLVM Toolchain – highlight 2: auto-vectorizing structure LD/ST

for (int i = 0; i < len; ++i)

 out[i] = in[i].r * 0.3f +

 in[i].g * 0.59f +

 in[i].b * 0.11f;

r

0

g

0

b

0

r

1

g

1

b

1

r

2

g

2

b

2

r

3

g

3

b

3

r

4

g

4

b

4

r

5

g

5

b

5

r

6

g

6

b

6

r

7

g

7

b

7

r

8

g

8

b

8

r

9

g

9

b

9

r

A

g

A

b

A

r

B

g

B

b

B

r

C

g

C

b

C

r

D

g

D

b

D

r

E

g

E

b

E

r

F

g

F

b

F

v19
r

0

r

1

r

2

r

3

r

4

r

5

r

6

r

7

r

8

r

9

r

A

r

B

r

C

r

D

r

E

r

F

v20
g

0

g

1

g

2

g

3

g

4

g

5

g

6

g

7

g

8

g

9

g

A

g

B

g

C

g

D

g

E

g

F

v21
b

0

b

1

b

2

b

3

b

4

b

5

b

6

b

7

b

8

b

9

b

A

b

B

b

C

b

D

b

E

b

F

in:

ld3 {v19.16b-v21.16b}, [x7]

* 0.3f

* 0.59f

* 0.11f
+

out

