
1

The Making of Seemore WebGL

Will Eastcott, CEO, PlayCanvas

2

What is Seemore WebGL?
A mobile-first, physically rendered game environment powered by HTML5 and WebGL

3

PlayCanvas: Powering Seemore WebGL
Open-source, WebGL game engine with cloud-based visual tools

4

Did I Mention PlayCanvas is Open Source?
https://github.com/playcanvas/engine

5

Updating a Classic
The original C++ Seemore demo was significantly upgraded in terms of visuals

6

 Physically Based Rendering (PBR)

 Lightmapping

 Ambient occlusion

 Dynamic shadow mapping

 Box projected cube map reflection mapping

 …and a serious amount of optimization

So How Did We Do It?

7

 Energy Conservation

 Meaningful maps

 HDR data

 Tonemapping

 Gamma Correction

Physically Based Rendering: The Basics

8

Physically Based Rendering: Material Input Data

 Material

 Albedo (color information)

 Normal (surface information)

 Gloss (microsurface information)

 Metalness (optional)

 Opacity (optional)

9

Physically Based Rendering: Environmental Input Data

 IBL probes – prefiltered, box projected

cubemaps

 Used custom filtering tool

 PlayCanvas editor users will soon be able

to generate these cubemaps in the

interface

 Analytical lights (point/directional,

energy conserving Blinn-Phong)

 Lightmaps

 Everything must be HDR!

 Encode HDR to RGBM

10

Physically Based Rendering: Materials

 Schlick’s Fresnel approximation

 Toksvig’s factor for specular anti-aliasing

11

Tonemapping

 Important for getting rid of overly bright

or dark spots

 Generally simulates how the eye or film

perceives colors

 Seemore uses the ‘well known’

Uncharted 2 tonemap. See:

http://filmicgames.com/archives/75

http://filmicgames.com/archives/75

12

Lightmapping
Single map for scenes with static light sources

13

 Use indirect lightmap as base ambient

 Store directional static shadows in a separate lightmap

 Can store multiple shadows in a texture’s color channels for a slightly moving light

 Mask real-time diffuse/specular light with shadows

 Combine with real-time shadows

Lightmapping
Direct and indirect lightmaps for scenes with slightly moving lights

14

Lightmapping
Indirect lightmap

15

Lightmapping
Direct lightmap

16

Dynamic Shadows: Interpolated Lightmaps

17

Dynamic Shadows: Interpolated Lightmaps

18

 Real-time shadow maps for dynamic objects

 Very costly on mobile devices (draw calls, projection, reads)

 Only update shadow map every 3rd frame if objects are not moving

 Only use real self-shadowing with multiple taps on dynamic objects

 Just use bilinear lookup without depth comparison on static receivers

 Shadow is encoded as RGB (depth) and A (mask for bilinear lookup) in an 8-bit 1024x1024 texture

 Use Normal Offset bias to reduce self-shadowing artifacts

 See http://www.dissidentlogic.com/old/#Normal%20Offset%20GDC%20Materials

Dynamic Shadows: Shadow Mapping

http://www.dissidentlogic.com/old/#Normal%20Offset%20GDC%20Materials

19

Dynamic Shadows: Shadow Mapping

20

 Occluding IBL lighting (especially specular) is vital

 Specular occlusion should ideally be view-dependent but it’s too expensive for mobile

 Baked AO maps (tweak attenuation for specular occlusion)

 Can store multiple AO maps in channels (the plant’s mouth, for example)

 Last resort: derive some occlusion factor from single/indirect lightmaps

 Procedural AO for special cases (e.g. plant tentacles)

Ambient Occlusion

21

Ambient Occlusion

22

Box Projected Cube Map Reflections

 Widely used in games to make cube

maps fit in a more correct way with the

scene

 Used for both IBL reflections and

refractions

 Excellent primer on the topic here:

http://www.gamedev.net/topic/568829-

box-projected-cubemap-environment-

mapping/

http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/

23

Box Projected Cube Map Reflections

24

 ETC1 Texture Compression (WEBGL_compressed_texture_etc1)

 Compressing textures is vital for low memory mobile devices

 WebGL is limited in the formats it exposes but does provide ETC1 (and DXT)

 Good results for diffuse, specular, gloss and lightmaps

 Bad results for normal maps

 Compressed the majority of normal maps anyway

 Remainder were left uncompressed when the results were particularly bad

 Use lowp in fragment shaders where possible

 Only precision-critical shaders (shadow mapping) retained highp

 Avoid costly math ops (pow, sqrt)

 Cull draw calls

 Sort opaque draw calls front to back

Optimization

25

Additional Tricks: Foliage

 Plants are translucent and pass light to the

back side

 Seemore plants are in a hemispherically lit room

 Just use –normal.y as a translucency factor

 Additional analytical per-vertex translucency

occlusion for the main plant

26

Additional Tricks: Halos

 Avoid full-screen effects

 Incurs high fill rate costs

 You lose hardware antialiasing

 Although it is possible to implement AA as

a post process, again, this is expensive

 Use a cheap alternative

 Transparent, camera aligned sprite

27

 We avoided an analytical approach

 Exposure controlled through script

 Dependent on location and view vector

Additional Tricks: Dynamic Exposure

28

 Instancing (ANGLE_instanced_arrays)

 Seemore was limited more on the GPU (fragment operations)

 The demo didn’t render enough instances to make a significant difference

 Variance Shadow Mapping

 Works well on desktop machines but a bug in Chrome’s float texture extension was problematic

 Encoding the shadow map to RGBA8 lost too much precision

Things That Didn’t Make The Cut

29

Putting It All Together

30

Putting It All Together

31

 The Open Source PlayCanvas project: https://github.com/playcanvas/engine

 The Cloud-Hosted PlayCanvas toolset: https://playcanvas.com

 The Seemore Demo: http://seemore.playcanvas.com

 ARM Mali Developer Center: http://malideveloper.arm.com

Some Links…

https://github.com/playcanvas/engine
https://github.com/playcanvas/engine
https://playcanvas.com/
https://playcanvas.com/
http://seemore.playcanvas.com/
http://seemore.playcanvas.com/
http://malideveloper.arm.com/
http://malideveloper.arm.com/

32

tanx.playcanvas.com

