
1

Performance Optimization and Debug Tools
for mobile games with PlayCanvas

Jonathan Kirkham, Senior Software Engineer, ARM
Will Eastcott, CEO, PlayCanvas

2

§  Worked with ARM technology and graphics at University

§  Joined ARM in 2011 to work on 3D graphics

§  Developing performance analysis tools and debuggers for the Mali GPUs

Introduction
Jonathan Kirkham, ARM

3

Agenda

1.  Introduction to WebGL™ on mobile
§  Rendering Pipeline

2.  PlayCanvas experience
§  WebGL Inspector

3.  Performance analysis and debugging
tools for WebGL
§  Generic optimization tips

4.  Q & A

4

Bring the Power of OpenGL® ES to Mobile Browsers

What is WebGL™?

§  A cross-platform, royalty free web

standard
§  Low-level 3D graphics API
§  Based on OpenGL® ES 2.0
§  A shader based API using GLSL

(OpenGL Shading Language)
§  Some concessions made to JavaScript™

(memory management)

Why WebGL?

§  It brings plug-in free 3D to the web,
implemented right into the browser.

§  Major browser vendors are members of
the WebGL Working Group:
§  Apple (Safari® browser)
§  Google (Chrome™ browser)

§  Mozilla (Firefox® browser)
§  Opera (Opera™ browser)

5

§  How does it fit in a web browser?
§  You use JavaScript™ to control it.
§  Your JavaScript is embedded in HTML5 and uses its Canvas element to draw on.

§  What do you need to start creating graphics?
§  Obtain WebGLrenderingContext object for a given HTMLCanvasElement.
§  It creates a drawing buffer into which the API calls are rendered.
§  For example:

Introduction to WebGL™

var	
 canvas	
 =	
 document.getElementById('canvas1');	

var	
 gl	
 =	
 canvas.getContext('webgl');	

canvas.width	
 =	
 newWidth;	

canvas.height	
 =	
 newHeight;	

gl.viewport(0,	
 0,	
 canvas.width,	
 canvas.height);	

6

§  User enters URL
§  HTTP stack requests the HTML page
§  Additional requests will be necessary to get

JavaScript™ code and other resources
§  JavaScript code will be pre-parsed while

loading other assets and the DOM tree is
built

§  JavaScript code will contain calls to the
WebGL API

§  They will go back to WebKit®, which calls
OpenGL® ES 2.0 library

§  Shaders are compiled
§  Textures, vertex buffers & uniforms must be

loaded to the GPU
§  Rendering can start

WebGL™ Stack
What is happening when a WebGL page is loaded

Browser

WebKit JavaScript Engine

OpenGL® ES
Library HTTP Stack libc

ARM® Mali™
GPU Driver Linux Kernel

Hardware

U
ser Space

Kernel Space

ARM Mali
GPU

ARM Cortex®-A
CPU

See Chromium Rendering Stack:
http://www.chromium.org/developers/design-documents/
gpu-accelerated-compositing-in-chrome

7

Introducing Me…

8

…and PlayCanvas

9

Google Docs for Games: Realtime Collaboration

10

Game Development Goes Mobile on ARM

11

At Last: A Real Community for Game Dev

12

At Last: A Real Community for Game Dev

13

Open Sourced: https://github.com/playcanvas/engine

14

The Building of a WebGL Game: SWOOOP

15

§  We didn’t use physics
§  We didn’t use realtime shadows
§  We didn’t use post effects
§  We adopted an art style which only required low res texturing
§  We kept the number of draw calls below 150
§  We added visual flare with cheap GPU based effects like particles and UV scrolling

What We Did Right

16

§  We adopted an art style which generated a lot of vertex data
§  Keeping draw calls low generated more vertex data
§  We used realtime lighting on the environment
§  Each gem was a separate draw call

What We Did Wrong

17

§  Learn from the Open Source community
§  In-browser Developer Tools
§  GLSL Optimizer (https://github.com/aras-p/glsl-optimizer)
§  WebGL Inspector (http://benvanik.github.io/WebGL-Inspector/)

Optimizing Your WebGL Code: Options

18

WebGL Inspector: Function Tracing

19

WebGL Inspector: Render State

20

WebGL Inspector: Textures

21

WebGL Inspector: Vertex and Index Buffers

22

WebGL Inspector: Shader Code

23

§  Easy to optimize your graphics pipeline on the CPU
§  Harder to know how to optimize on the GPU
§  Use ARM tools to get special insight into how your graphics data is being processed

Understanding the GPU is Key

24

Importance of Analysis & Debug

§  Mobile Platforms
§  Expectation of amazing console-like graphics and playing experience
§  Screen resolution beyond HD
§  Limited power budget

§  Solution
§  ARM® Cortex® CPUs and Mali™ GPUs are designed for low power

whilst providing innovative features to keep up performance
§  Software developers can be “smart” when developing apps
§  Good tools can do the heavy lifting

25

Performance Analysis & Debug

ARM® DS-5 Streamline
Performance Analyzer
•  System-wide performance analysis

•  Combined ARM Cortex®
Processors and Mali™ GPU visibility

•  Optimize for performance & power
across the system

ARM Mali Graphics Debugger
•  API Trace & Debug Tool

•  Understand graphics and compute
issues at the API level

•  Debug and improve performance
at frame level

•  Support for OpenGL® ES 1,1, 2.0,
3.0 and OpenCL™ 1.1

Offline Compilers
•  Understand complexity of GLSL
shaders and CL kernels

•  Support for ARM Mali-4xx and
Mali-T6xx GPU families

26

ARM® DS-5 Streamline Performance Analyzer

Filmstrip

CPU Activity

S/W Counters

H/W Counters

GPU Activity

API Events

Heatmap

27

The Basics
§  Software based solution

§  ICE/trace units not required

§  Support for Linux kernel 2.6.32+ on target
§  Eclipse plug-in or command line

§  Lightweight sample profiling
§  Time- or event*-based sampling
§  Process to C/C++ source code profiler
§  Low probe effect; <5% typically

§  Multiple data sources
§  CPU, GPU and Interconnect hardware counters
§  Software counters and kernel tracepoints
§  User defined counters and instrumented code
§  Power/energy measurements

User Space

ARM Processor

OpenGL® ES

Applications & Middleware

Linux Kernel

ARM® Mali™ GPU Drivers

gator Daemon

gator Driver

TCP/IP

Target D
evice

* Event-based sampling is available on kernels 3.0 or later

28

ARM® Mali™ Graphics Debugger

Frame Outline

Framebuffer /
Render
Targets

Frame Statistics

States
Uniforms
Vertex Attributes
Buffers

Dynamic Help

API Trace

Textures

Shader View

29

Main Bottlenecks (1)

§  The frame rate of a particular WebGL™
application could be limited by:

§  CPU
§  Vertex Processing
§  Fragment Processing
§  Bandwidth

§  Fortunately we have tools to
understand which one is the culprit

CPU

Vertex
Processing

Fragment
Processing

Memory

Vertices
Textures
Uniforms

Vertices
Uniforms

Triangles
Varyings Pixels

Textures
Uniforms
Varyings

30

Main Bottlenecks (2)
§  CPU

§  Too many draw calls
§  Complex physics

§  Vertex processing
§  Too many vertices
§  Too much computation per vertex

§  Fragment processing
§  Too many fragments, overdraw
§  Too much computation per fragment

§  Bandwidth
§  Big and uncompressed textures
§  High resolution framebuffer

CPU

Vertex
Processing

Fragment
Processing

Memory

Vertices
Textures
Uniforms

Vertices
Uniforms

Triangles
Varyings Pixels

Textures
Uniforms
Varyings

31

Frame Rendering Time

//	
 THIS	
 DOES	
 NOT	
 MEASURE	
 GPU	
 RENDERING	

	

var	
 start	
 =	
 new	
 Date().getTime();	

gl.drawElements(gl.TRIANGLE,	
 …);	

var	
 time	
 =	
 new	
 Date().getTime()	
 -­‐	
 start;	

	

//	
 THIS	
 FORCES	
 SYNCHRONOUS	
 RENDERING	

//	
 (BAD	
 PRACTICE)	

	

var	
 start	
 =	
 new	
 Date().getTime();	

gl.drawElements(gl.TRIANGLE,	
 …);	

gl.finish();	
 //	
 or	
 gl.readPixels…	

var	
 time	
 =	
 new	
 Date().getTime()	
 -­‐	
 start;	

	

Synchronous Rendering

Deferred Rendering

32

Workflow

ARM® DS-5 Streamline
Performance Analyzer

What kind of problem do we have?

ARM Mali Graphics Debugger

What’s causing the problem?

How can I fix it?

Validate

Detailed analysis

33

Fragment Bound

34

ARM DS-5 Streamline: Fragment Bound

§  Involves just 1 counter and the frequency of the GPU
§  Job Slot 0 Active

Fragment Percentage = (Job Slot 0
active / Frequency) *100

Fragment Percentage = 84%

Overdraw = Fragment Threads Started * Number of
Cores / Resolution * FPS

Overdraw = 3.9

35

Fragment Bound

§  Resolution too high or too many effects or cycles in the
shader

§  Every light and effect that you add will add to the number of
cycles your shader will take

§  If you decide to run your app at native resolution be careful

Nexus 10 Native Resolution
•  2560 x 1600 = 4,096,000 pixels
Quad Core GPU 533Mhz
•  520 Cycles per pixel Approx.
Targeting 30 FPS
•  17 Cycles in your shader

36

Overdraw

§  This is when you draw to each pixel on the screen
more than once

§  Drawing your objects front to back instead of back
to front reduces overdraw

§  Limiting the amount of transparency in the scene
can help

Overdraw

37

ARM Mali Graphics Debugger: Overdraw

4x

1x

2x

38

ARM Mali Graphics Debugger: Shader Map & Fragment Count

71%

28%

1%

Total Cycles Per Program

Program 54

Program 60

Others

39

Shader Optimization

§  Depending on the arithmetic workload,
we could reduce the number of
uniforms and varyings and calculate
them on-the-fly

§  Reduce their size
§  Reduce their precision: all the varyings,

uniforms and local variables are highp, is
that really necessary?

§  Use the ARM® Mali™ Offline Shader
Compiler!

http://malideveloper.arm.com/develop-for-mali/
tools/analysis-debug/mali-gpu-offline-shader-
compiler/

40

§  Render to a smaller framebuffer
§  This will upscale the rendered frame to the

size of the HTML canvas

§  Move computation from the fragment to
the vertex shader (use HW interpolation)

§  Drawing your objects front to back instead
of back to front reduces overdraw

§  Reduce the amount of transparency in the
scene

General Tips
Fragment Bound

41

Vertex Bound

42

ARM DS-5 Streamline: Vertex Bound
§  Involves just 1 counter and the frequency of the GPU

§  Job Slot 1 Active

Vertex Percentage = (Job Slot 1 active / Frequency) *100

Vertex Percentage = 13%

43

ARM Mali Graphics Debugger: Vertices Count

§  Analyze the trace in Mali Graphics Debugger
§  Find the draw calls with a high number of

vertices

§  Shader Statistics
§  Find the vertex shaders with a high number of

instructions

44

ARM Mali Graphics Debugger: Frame Capture

45

§  Get your artist to remove unnecessary
vertices

§  LOD switching
§  Only objects near the camera need to be in high

detail

§  Use culling

§  Too many cycles in the vertex shader

General Tips
Vertex Bound

46

Bandwidth Bound

47

ARM DS-5 Streamline: Bandwidth Counters

§  Involves just 2 Streamline Counters
§  External Bus Read Beats
§  External Bus Write Beats

Bandwidth in Bytes = (External Bus Read Beats + External Bus Write Beats) * Bus Width

Bandwidth = 967 MB/S

48

§  The current most popular format is
ETC Texture Compression

§  But ASTC (Adaptive Scalable Texture
Compression) can deliver < 1 bit/pixel

ARM Mali Graphics Debugger: Textures
Save memory and bandwidth with texture compression

0

5

10

15

20

Total ~40 MB

M
B

Texture Weight by Dimension

2048 x 2048

1024 x 2048

1024 x 1024

512 x 512

512 x 256

256 x 256

128 x 128

With texture compression, the total amount could be just ~6.4 MB (ASTC 5x5 blocks)

Sort by size and format

49

ARM Mali Graphics Debugger: Vertex Buffer Objects

§  Using Vertex Buffer Objects (VBOs) can
save you a lot of time in overhead

§  Every frame in your application, all of your
vertices and colour information will get sent
to the GPU

§  A lot of the time these won’t change. So
there is no need to keep sending them

§  Would be a much better idea to cache the
data in graphics memory

50

§  Use texture compression

§  Enable texture mipmapping

§  Reduce the number of vertices and varyings

§  Interleave vertices, normals, texture coordinates

§  Reduce the size of the textures

§  Use VBOs

This will also cause a better cache utilization.

General Tips
Bandwidth Bound

51

CPU Bound

52

CPU Bound Streamline

§  Easy just look at the CPU Activity
§  Remember to look at all the cores.

Some of the area is greyed out due to Streamline’s ability to present per process CPU activity

53

§  Sometimes a slow frame rate can actually be a CPU
issue and not a GPU one

§  In this case optimizing your graphics won’t achieve anything

§  Most mobile devices have more than one core these
days

§  Are you threading your application as much as possible?

§  Mali GPU is a deferred architecture
§  Reduce the amount of draw calls you make
§  Try to combine your draw calls together

General Tips
CPU Bound

54

Summary

§  Covered today:

§  Introduction to WebGL

§  PlayCanvas

§  Profiling with ARM DS-5 Streamline

§  Debugging with the ARM Mali Graphics

Debugger

§  ARM:
§  www.malideveloper.arm.com
§  www.ds.arm.com
§  www.community.arm.com

§  WebGL & PlayCanvas:
§  http://www.khronos.org/webgl/
§  https://playcanvas.com
§  https://github.com/playcanvas/engine
§  http://swooop.playcanvas.com
§  https://playcanvas.com/playcanvas/swooop

55

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU
and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

Any Questions?

