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§  Worked with ARM technology and graphics at University 

§  Joined ARM in 2011 to work on 3D graphics 

§  Developing performance analysis tools and debuggers for the Mali GPUs 

 

Introduction 
Jonathan Kirkham, ARM 
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Agenda 

1.  Introduction to WebGL™ on mobile 
§  Rendering Pipeline 

2.  PlayCanvas experience 
§  WebGL Inspector 

3.  Performance analysis and debugging 
tools for WebGL 
§  Generic optimization tips 
 

4.  Q & A 
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Bring the Power of OpenGL® ES to Mobile Browsers 

What is WebGL™? 
 
§  A cross-platform, royalty free web 

standard 
§  Low-level 3D graphics API  
§  Based on OpenGL® ES 2.0 
§  A shader based API using GLSL 

(OpenGL Shading Language) 
§  Some concessions made to JavaScript™ 

(memory management) 

Why WebGL? 

§  It brings plug-in free 3D to the web, 
implemented right into the browser. 

§  Major browser vendors are members of 
the WebGL Working Group: 
§  Apple (Safari® browser) 
§  Google (Chrome™ browser) 

§  Mozilla (Firefox® browser) 
§  Opera (Opera™ browser) 
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§  How does it fit in a web browser? 
§  You use JavaScript™ to control it. 
§  Your JavaScript is embedded in HTML5 and uses its Canvas element to draw on. 
 

§  What do you need to start creating graphics? 
§  Obtain WebGLrenderingContext object for a given HTMLCanvasElement. 
§  It creates a drawing buffer into which the API calls are rendered. 
§  For example: 

Introduction to WebGL™ 

var	
  canvas	
  =	
  document.getElementById('canvas1');	
  
var	
  gl	
  =	
  canvas.getContext('webgl');	
  
canvas.width	
  =	
  newWidth;	
  
canvas.height	
  =	
  newHeight;	
  
gl.viewport(0,	
  0,	
  canvas.width,	
  canvas.height);	
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§  User enters URL 
§  HTTP stack requests the HTML page 
§  Additional requests will be necessary to get 

JavaScript™ code and other resources 
§  JavaScript code will be pre-parsed while 

loading other assets and the DOM tree is 
built 

§  JavaScript code will contain calls to the 
WebGL API 

§  They will go back to WebKit®, which calls 
OpenGL® ES 2.0 library 

§  Shaders are compiled 
§  Textures, vertex buffers & uniforms must be 

loaded to the GPU 
§  Rendering can start 

WebGL™ Stack 
What is happening when a WebGL page is loaded 

Browser 

WebKit JavaScript Engine 

OpenGL® ES 
Library HTTP Stack libc 

ARM® Mali™ 
GPU Driver Linux Kernel 

Hardware 

U
ser Space 

Kernel Space 

ARM Mali 
GPU 

ARM Cortex®-A 
CPU 

See Chromium Rendering Stack: 
http://www.chromium.org/developers/design-documents/ 
gpu-accelerated-compositing-in-chrome 
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Introducing Me… 
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…and PlayCanvas 
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Google Docs for Games: Realtime Collaboration 
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Game Development Goes Mobile on ARM 
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At Last: A Real Community for Game Dev 
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At Last: A Real Community for Game Dev 
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Open Sourced: https://github.com/playcanvas/engine 
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The Building of a WebGL Game: SWOOOP 
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§  We didn’t use physics 
§  We didn’t use realtime shadows 
§  We didn’t use post effects 
§  We adopted an art style which only required low res texturing 
§  We kept the number of draw calls below 150 
§  We added visual flare with cheap GPU based effects like particles and UV scrolling 

What We Did Right 
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§  We adopted an art style which generated a lot of vertex data 
§  Keeping draw calls low generated more vertex data 
§  We used realtime lighting on the environment 
§  Each gem was a separate draw call 

What We Did Wrong 
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§  Learn from the Open Source community 
§  In-browser Developer Tools 
§  GLSL Optimizer (https://github.com/aras-p/glsl-optimizer) 
§  WebGL Inspector (http://benvanik.github.io/WebGL-Inspector/) 

Optimizing Your WebGL Code: Options 
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WebGL Inspector: Function Tracing 
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WebGL Inspector: Render State 
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WebGL Inspector: Textures 
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WebGL Inspector: Vertex and Index Buffers 
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WebGL Inspector: Shader Code 
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§  Easy to optimize your graphics pipeline on the CPU 
§  Harder to know how to optimize on the GPU 
§  Use ARM tools to get special insight into how your graphics data is being processed 

Understanding the GPU is Key 
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Importance of Analysis & Debug 

§  Mobile Platforms 
§  Expectation of amazing console-like graphics and playing experience 
§  Screen resolution beyond HD 
§  Limited power budget  

§  Solution 
§  ARM® Cortex® CPUs and Mali™ GPUs are designed for low power 

whilst providing innovative features to keep up performance 
§  Software developers can be “smart” when developing apps 
§  Good tools can do the heavy lifting 
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Performance Analysis & Debug 

ARM® DS-5 Streamline 
Performance Analyzer 
•  System-wide performance analysis 

•  Combined ARM Cortex® 
Processors and Mali™ GPU visibility 

•  Optimize for performance & power 
across the system 

ARM Mali Graphics Debugger 
•  API Trace & Debug Tool 

•  Understand graphics and compute 
issues at the API level 

•  Debug and improve performance 
at frame level 

•  Support for OpenGL® ES 1,1, 2.0, 
3.0 and OpenCL™ 1.1 

Offline Compilers 
•  Understand complexity of GLSL 
shaders and CL kernels 

•  Support for ARM Mali-4xx and 
Mali-T6xx GPU families 
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ARM® DS-5 Streamline Performance Analyzer 

Filmstrip 

CPU Activity 

S/W Counters 

H/W Counters 

GPU Activity 

API Events 

Heatmap 
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The Basics 
§  Software based solution 

§  ICE/trace units not required 

§  Support for Linux kernel 2.6.32+ on target 
§  Eclipse plug-in or command line  

§  Lightweight sample profiling 
§  Time- or event*-based sampling 
§  Process to C/C++ source code profiler 
§  Low probe effect; <5% typically 

§  Multiple data sources 
§  CPU, GPU and Interconnect hardware counters 
§  Software counters and kernel tracepoints 
§  User defined counters and instrumented code 
§  Power/energy measurements 

User Space 

ARM Processor 

OpenGL® ES 

Applications & Middleware 

Linux Kernel 

ARM® Mali™ GPU Drivers 
 
 

gator Daemon 
 

gator Driver 

TCP/IP 

Target D
evice 

* Event-based sampling is available on kernels 3.0 or later 
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ARM® Mali™ Graphics Debugger 

Frame Outline 

Framebuffer / 
Render 
Targets 

Frame Statistics 

States 
Uniforms 
Vertex Attributes 
Buffers 

Dynamic Help 

API Trace 

Textures 

Shader View 



29 
 

Main Bottlenecks (1) 

§  The frame rate of a particular WebGL™ 
application could be limited by: 

§  CPU 
§  Vertex Processing 
§  Fragment Processing 
§  Bandwidth 

§  Fortunately we have tools to 
understand which one is the culprit 

CPU 

Vertex 
Processing 

Fragment  
Processing 

Memory 

Vertices 
Textures 
Uniforms 

Vertices 
Uniforms 

Triangles 
Varyings Pixels 

Textures 
Uniforms 
Varyings 
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Main Bottlenecks (2) 
§  CPU 

§  Too many draw calls 
§  Complex physics 
 

§  Vertex processing  
§  Too many vertices 
§  Too much computation per vertex 
 

§  Fragment processing 
§  Too many fragments, overdraw 
§  Too much computation per fragment 
 

§  Bandwidth  
§  Big and uncompressed textures 
§  High resolution framebuffer 

CPU 

Vertex 
Processing 

Fragment  
Processing 

Memory 

Vertices 
Textures 
Uniforms 

Vertices 
Uniforms 

Triangles 
Varyings Pixels 

Textures 
Uniforms 
Varyings 



31 
 

Frame Rendering Time 

//	
  THIS	
  DOES	
  NOT	
  MEASURE	
  GPU	
  RENDERING	
  
	
  
var	
  start	
  =	
  new	
  Date().getTime();	
  
gl.drawElements(gl.TRIANGLE,	
  …);	
  
var	
  time	
  =	
  new	
  Date().getTime()	
  -­‐	
  start;	
  
	
  

//	
  THIS	
  FORCES	
  SYNCHRONOUS	
  RENDERING	
  
//	
  (BAD	
  PRACTICE)	
  
	
  
var	
  start	
  =	
  new	
  Date().getTime();	
  
gl.drawElements(gl.TRIANGLE,	
  …);	
  
gl.finish();	
  //	
  or	
  gl.readPixels…	
  
var	
  time	
  =	
  new	
  Date().getTime()	
  -­‐	
  start;	
  
	
  

Synchronous Rendering 

Deferred Rendering 
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Workflow 

ARM® DS-5 Streamline 
Performance Analyzer 
 
What kind of problem do we have? 

ARM Mali Graphics Debugger 
 
What’s causing the problem? 
 
How can I fix it? 

Validate 

Detailed analysis 
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Fragment Bound 
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ARM DS-5 Streamline: Fragment Bound 

§  Involves just 1 counter and the frequency of the GPU 
§  Job Slot 0 Active 

Fragment Percentage = (Job Slot 0 
active / Frequency) *100 

Fragment Percentage = 84% 

Overdraw = Fragment Threads Started * Number of 
Cores / Resolution * FPS 
 

Overdraw = 3.9 



35 
 

Fragment Bound 

§  Resolution too high or too many effects or cycles in the 
shader 

§  Every light and effect that you add will add to the number of 
cycles your shader will take 

§  If you decide to run your app at native resolution be careful  

Nexus 10 Native Resolution 
•  2560 x 1600 = 4,096,000 pixels 
Quad Core GPU 533Mhz 
•  520 Cycles per pixel Approx. 
Targeting 30 FPS 
•  17 Cycles in your shader 
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Overdraw 

§  This is when you draw to each pixel on the screen 
more than once 

§  Drawing your objects front to back instead of back 
to front reduces overdraw 

§  Limiting the amount of transparency in the scene 
can help 

Overdraw 



37 
 

ARM Mali Graphics Debugger: Overdraw 

4x 

1x 

2x 
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ARM Mali Graphics Debugger: Shader Map & Fragment Count 

71% 

28% 

1% 

Total Cycles Per Program 

Program 54 

Program 60 

Others 
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Shader Optimization 

§  Depending on the arithmetic workload, 
we could reduce the number of 
uniforms and varyings and calculate 
them on-the-fly 

§  Reduce their size 
§  Reduce their precision: all the varyings, 

uniforms and local variables are highp, is 
that really necessary? 

§  Use the ARM® Mali™ Offline Shader 
Compiler! 

http://malideveloper.arm.com/develop-for-mali/
tools/analysis-debug/mali-gpu-offline-shader-
compiler/ 
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§  Render to a smaller framebuffer 
§  This will upscale the rendered frame to the 

size of the HTML canvas 

§  Move computation from the fragment to 
the vertex shader (use HW interpolation) 

§  Drawing your objects front to back instead 
of back to front reduces overdraw 

§  Reduce the amount of transparency in the 
scene 

General Tips 
Fragment Bound 
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Vertex Bound 
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ARM DS-5 Streamline: Vertex Bound 
§  Involves just 1 counter and the frequency of the GPU 

§  Job Slot 1 Active 

Vertex Percentage = (Job Slot 1 active / Frequency) *100 

Vertex Percentage = 13% 
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ARM Mali Graphics Debugger: Vertices Count 

§  Analyze the trace in Mali Graphics Debugger 
§  Find the draw calls with a high number of 

vertices 

§  Shader Statistics 
§  Find the vertex shaders with a high number of 

instructions 
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ARM Mali Graphics Debugger: Frame Capture 
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§  Get your artist to remove unnecessary 
vertices 

§  LOD switching 
§  Only objects near the camera need to be in high 

detail 

§  Use culling 

§  Too many cycles in the vertex shader 

General Tips 
Vertex Bound 
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Bandwidth Bound 
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ARM DS-5 Streamline: Bandwidth Counters 

§  Involves just 2 Streamline Counters 
§  External Bus Read Beats 
§  External Bus Write Beats 

Bandwidth in Bytes = (External Bus Read Beats + External Bus Write Beats) * Bus Width 
 
 

Bandwidth = 967 MB/S 
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§  The current most popular format is 
ETC Texture Compression 

§  But ASTC (Adaptive Scalable Texture 
Compression) can deliver < 1 bit/pixel 

 
 

ARM Mali Graphics Debugger: Textures 
Save memory and bandwidth with texture compression 

0 

5 

10 

15 

20 

Total ~40 MB 

M
B

 

Texture Weight by Dimension 

2048 x 2048 

1024 x 2048 

1024 x 1024 

512 x 512 

512 x 256 

256 x 256 

128 x 128 

With texture compression, the total amount could be just ~6.4 MB (ASTC 5x5 blocks) 

Sort by size and format 
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ARM Mali Graphics Debugger: Vertex Buffer Objects 

§  Using Vertex Buffer Objects (VBOs) can 
save you a lot of time in overhead 

§  Every frame in your application, all of your 
vertices and colour information will get sent 
to the GPU 

§  A lot of the time these won’t change. So 
there is no need to keep sending them 

§  Would be a much better idea to cache the 
data in graphics memory 
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§  Use texture compression 

§  Enable texture mipmapping 

§  Reduce the number of vertices and varyings 

§  Interleave vertices, normals, texture coordinates 

§  Reduce the size of the textures 

§  Use VBOs 

This will also cause a better cache utilization. 

General Tips 
Bandwidth Bound 
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CPU Bound 
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CPU Bound Streamline 

§  Easy just look at the CPU Activity 
§  Remember to look at all the cores. 

Some of the area is greyed out due to Streamline’s ability to present per process CPU activity 
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§  Sometimes a slow frame rate can actually be a CPU 
issue and not a GPU one 

§  In this case optimizing your graphics won’t achieve anything 

§  Most mobile devices have more than one core these 
days 

§  Are you threading your application as much as possible? 

§  Mali GPU is a deferred architecture 
§  Reduce the amount of draw calls you make 
§  Try to combine your draw calls together 

General Tips 
CPU Bound 
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Summary 

§  Covered today: 

§  Introduction to WebGL 

§  PlayCanvas 

§  Profiling with ARM DS-5 Streamline 

§  Debugging with the ARM Mali Graphics 

Debugger 

§  ARM: 
§  www.malideveloper.arm.com 
§  www.ds.arm.com 
§  www.community.arm.com 

§  WebGL & PlayCanvas: 
§  http://www.khronos.org/webgl/ 
§  https://playcanvas.com 
§  https://github.com/playcanvas/engine 
§  http://swooop.playcanvas.com 
§  https://playcanvas.com/playcanvas/swooop 
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Thank You 

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU 
and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners 

Any Questions? 


