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OpenCL™ and RenderScript 



OpenCL 

Khronos standard 

Heterogeneous Systems 

General and Low-level 
– Explicit device selection 

– Explicit memory management 

– Explicit kernel object management 



RenderScript 

The GPU-Compute API on Android™ 

Assumes CPU and GPU only 

Transparent device selection 
– The driver manages and selects devices 

Transparent memory management 
– Copying managed by the driver, based on allocation flags 

Higher level than OpenCL 
– Less explicit control over details 

– Know your driver! 



ARM® Mali™ GPUs 
ARM Mali-T604 GPU and ARM Mali-T628 GPU 



GPGPU on the Midgard Architecture 
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Latency Hiding by Parallelism 

Executing a program on an ARM Cortex®- A15 
CPU 
– Execution of consecutive instructions overlap in time 

– Instruction latencies and branch predictions are important 

Executing a kernel on a ARM Mali-T6xx GPU 
– Execution of different threads overlap in time 

– Execution of different instructions of a single thread never overlap 

This leads to latency tolerance 
– No need for branch predictors 

– No need to worry about pipeline latencies 

– Memory latency can still be an issue 



Arithmetic and Load/Store pipes 

SIMD: Several components per operation 
– 128-bit registers 

VLIW: Several operations per instruction word 
– Some operations are “free” 

 

 
 



Hardware Counters 



Hardware Counters 

Counters per core 
– Active Cycles 

– Pipe activity 

– L1 cache 

Counters per Core Group 
– L2 caches 

Counters for the GPU 
– Active cycles  

Accessed through Streamline™ 
– Timeline of all hardware counters, and more 

– Explore the execution of the full application 

– Zoom in on details 



Streamline 



Optimizing 
with Streamline and Hardware Counters 



Memories 

Only one programmer controlled memory 
– Many transparent caches 

Memory copying takes time 
– It can easily dominate over kernel execution time 

Use appropriate memory allocation schemes 

Avoid synchronization points 
– Cache maintenance has a cost as well 

Streamline to the rescue 
– Visualize when kernels are executed 

– Many features not covered here 



Hiding Pipeline Latency 

Needs enough threads 
– Limited by register usage 

When there are issues 
– Few instructions issued per cycle 

– Spilling of values to memory 

Symptoms 
– Low Max Local Workgroup Size in OpenCL 

– Few instructions issued per cycle in limiting pipe 

Remedy 
– Smaller types  More values per register 

– Splitting kernels 



Pipeline Utilization 

Prefer vector operations 
– More components per operation 

Prefer small types 
– More components in 128 bits 

Balance work between the pipes 
– Do less – with the pipe that limits performance 
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Finding the Bottlenecks 

Host application or Kernel execution 
– Avoid memory copying 

– Avoid cache flushes 

Which pipe is important? 
– Operations in other pipes incur little or no runtime cost 

Saving operations or saving registers 
– How much register pressure can we handle, and still hide the 

latencies? 

How well are we using the caches 
– Are instructions spinning around the LS pipe waiting for data? 



Optimizing 
Two examples 



The Limiting Pipe 

Three hardware counters 
– Cycles active (#C) 

– Number of A instructions (#A) 

– Number of LS instructions (#LS) 

The goal 
– Similar values for #A and #LS  Both pipes used 

– Max(#A, #LS) similar to #C  Limiting pipe used every cycle 

Example: 
– #LS / #A = 5 

– #LS / #A = 1, #C up by < 10% 
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Cache Utilization 

The Load/Store pipe hides latency 
– Many threads active 

Not always successful 
– Insufficient parallelism 

– Bad cache utilization 

– Failing threads will be reissued 

Reissue is a sign of cache-misses 
– Instruction words issued 

– Instruction words completed 

Example 
– Inter-thread stride for memory accesses 



Execution Order 

Kernel saxpy 
– Load from x 

– Load from y 

– Compute 

– Store to y 

Execution order 
– Threads 1 through N load from x 

– Threads 1 through N load from y 

– Threads 1 through N compute 

– Threads 1 through N store to y 

How many bytes should we load per thread? 
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A Single Instruction Word 

We should have one load instruction word 
– The next bytes will be picked up by the next thread 

Loading less is bad 
– Does not utilize the SIMD operations 

Loading more is bad 
– The next bytes will be loaded after all other threads have loaded 

their first 

Saxpy with different strides 
– 128 bits: 4.5 issues per instruction 

– 256 bits: 5.5 issues per instruction 

– 64 bytes: 9.3 issues per instruction 



Optimizing 
General Advice 



Know your bottleneck 

Use vector operations 

If you are bandwidth-limited, merge kernels 
– Avoid reloading data 

If you are register-limited, split kernels 
– Easier for the compiler to do a good job 

If you are Load-Store-limited, do less load-store 
– Compute complex expressions instead of using lookup-tables 

If you are Arithmetic-limited, do less arithmetic 
– Tabulate functions 

– Use polynomial approximations instead of special functions 
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Synchronization between threads 

Two options in OpenCL 
– Barriers inside a work-group 

– Atomics between work-groups 

We like atomics to ensure data consistency 
– But preferably on the same core 

Barriers can be useful to improve cache utilization 
– Limit divergence between threads 

– Keeping jobs small serves the same purpose 

We see examples of large jobs with many barriers 
– We often prefer small jobs with dependencies 



Vectorize your operations 

More components per operation 
– For basic arithmetic and memory operations 

– Square roots, trigonometry and atomics are scalar 

Fewer registers used 
– The compiler will only do part of the job 


