
Optimizing Compute Kernels
for Mobile GPUs

Johan Gronqvist

OpenCL™ and RenderScript

OpenCL

Khronos standard

Heterogeneous Systems

General and Low-level
– Explicit device selection

– Explicit memory management

– Explicit kernel object management

RenderScript

The GPU-Compute API on Android™

Assumes CPU and GPU only

Transparent device selection
– The driver manages and selects devices

Transparent memory management
– Copying managed by the driver, based on allocation flags

Higher level than OpenCL
– Less explicit control over details

– Know your driver!

ARM® Mali™ GPUs
ARM Mali-T604 GPU and ARM Mali-T628 GPU

GPGPU on the Midgard Architecture

Inside a Core

Load/Store

Pipeline

Arithmetic

Pipeline

Arithmetic

Pipeline

Texturing

Pipeline

Thread Issue

Thread Completion

),,,max(10 TexLSAAT 

Latency Hiding by Parallelism

Executing a program on an ARM Cortex®- A15
CPU
– Execution of consecutive instructions overlap in time

– Instruction latencies and branch predictions are important

Executing a kernel on a ARM Mali-T6xx GPU
– Execution of different threads overlap in time

– Execution of different instructions of a single thread never overlap

This leads to latency tolerance
– No need for branch predictors

– No need to worry about pipeline latencies

– Memory latency can still be an issue

Arithmetic and Load/Store pipes

SIMD: Several components per operation
– 128-bit registers

VLIW: Several operations per instruction word
– Some operations are “free”

Hardware Counters

Hardware Counters

Counters per core
– Active Cycles

– Pipe activity

– L1 cache

Counters per Core Group
– L2 caches

Counters for the GPU
– Active cycles

Accessed through Streamline™
– Timeline of all hardware counters, and more

– Explore the execution of the full application

– Zoom in on details

Streamline

Optimizing
with Streamline and Hardware Counters

Memories

Only one programmer controlled memory
– Many transparent caches

Memory copying takes time
– It can easily dominate over kernel execution time

Use appropriate memory allocation schemes

Avoid synchronization points
– Cache maintenance has a cost as well

Streamline to the rescue
– Visualize when kernels are executed

– Many features not covered here

Hiding Pipeline Latency

Needs enough threads
– Limited by register usage

When there are issues
– Few instructions issued per cycle

– Spilling of values to memory

Symptoms
– Low Max Local Workgroup Size in OpenCL

– Few instructions issued per cycle in limiting pipe

Remedy
– Smaller types  More values per register

– Splitting kernels

Pipeline Utilization

Prefer vector operations
– More components per operation

Prefer small types
– More components in 128 bits

Balance work between the pipes
– Do less – with the pipe that limits performance

),,,max(10 TexLSAAT 

Finding the Bottlenecks

Host application or Kernel execution
– Avoid memory copying

– Avoid cache flushes

Which pipe is important?
– Operations in other pipes incur little or no runtime cost

Saving operations or saving registers
– How much register pressure can we handle, and still hide the

latencies?

How well are we using the caches
– Are instructions spinning around the LS pipe waiting for data?

Optimizing
Two examples

The Limiting Pipe

Three hardware counters
– Cycles active (#C)

– Number of A instructions (#A)

– Number of LS instructions (#LS)

The goal
– Similar values for #A and #LS  Both pipes used

– Max(#A, #LS) similar to #C  Limiting pipe used every cycle

Example:
– #LS / #A = 5

– #LS / #A = 1, #C up by < 10%

yxay 

yxaxaxaxay  05.0...05.005.005.0

Cache Utilization

The Load/Store pipe hides latency
– Many threads active

Not always successful
– Insufficient parallelism

– Bad cache utilization

– Failing threads will be reissued

Reissue is a sign of cache-misses
– Instruction words issued

– Instruction words completed

Example
– Inter-thread stride for memory accesses

Execution Order

Kernel saxpy
– Load from x

– Load from y

– Compute

– Store to y

Execution order
– Threads 1 through N load from x

– Threads 1 through N load from y

– Threads 1 through N compute

– Threads 1 through N store to y

How many bytes should we load per thread?

yxay 

A Single Instruction Word

We should have one load instruction word
– The next bytes will be picked up by the next thread

Loading less is bad
– Does not utilize the SIMD operations

Loading more is bad
– The next bytes will be loaded after all other threads have loaded

their first

Saxpy with different strides
– 128 bits: 4.5 issues per instruction

– 256 bits: 5.5 issues per instruction

– 64 bytes: 9.3 issues per instruction

Optimizing
General Advice

Know your bottleneck

Use vector operations

If you are bandwidth-limited, merge kernels
– Avoid reloading data

If you are register-limited, split kernels
– Easier for the compiler to do a good job

If you are Load-Store-limited, do less load-store
– Compute complex expressions instead of using lookup-tables

If you are Arithmetic-limited, do less arithmetic
– Tabulate functions

– Use polynomial approximations instead of special functions

Optimizing Compute Kernels
for Mobile GPUs

Johan Gronqvist

Synchronization between threads

Two options in OpenCL
– Barriers inside a work-group

– Atomics between work-groups

We like atomics to ensure data consistency
– But preferably on the same core

Barriers can be useful to improve cache utilization
– Limit divergence between threads

– Keeping jobs small serves the same purpose

We see examples of large jobs with many barriers
– We often prefer small jobs with dependencies

Vectorize your operations

More components per operation
– For basic arithmetic and memory operations

– Square roots, trigonometry and atomics are scalar

Fewer registers used
– The compiler will only do part of the job

