. B

L
Optimizing Compute Kernel
for Mobtle GPUs

Johan Grongvist

]

. L
o
* ,v'\ %"

i \-‘;\"
Y
*

» en d

U.. .
. .
. . . ‘
"
- ; ' P
& y

- »
. OpenCL"™ anql

e Khronos standard

¢ Heterogeneous Systems

¢ General and Low-level
— Explicit device selection
— Explicit memory management
— Explicit kernel object management

RenderScript

¢ The GPU-Compute API on Android™
¢ Assumes CPU and GPU only

e Transparent device selection
— The driver manages and selects devices

¢ Transparent memory management
— Copying managed by the driver, based on allocation flags

¢ Higher level than OpenCL

— Less explicit control over details
— Know your driver!

& ARM® Mali™ GPUs
ARM Mali-T604 GPU and A\RNMali-Tg'a GP
\I :

.
.

\

|
|

GPGPU on the Midgard Architecture

w | >
Work Iltem

Registers, PC, SP, Private stack

O

Barriers, Local Atomics, Cached local memory

Work Group

Core Group

Core Core

- . | > R —
. - Global Atomics, Cached global memory IIIIII IIIIII

NDRange

Inside a Core

T =max(A, A, LS, Tex)

Latency Hiding by Parallelism

¢ Executing a program on an ARM Cortex®- A15
CPU

— Execution of consecutive instructions overlap in time
— Instruction latencies and branch predictions are important

¢ Executing a kernel on a ARM Mali-Texx GPU

— Execution of different threads overlap in time
— Execution of different instructions of a single thread never overlap

¢ This leads to latency tolerance
— No need for branch predictors
— No need to worry about pipeline latencies
— Memory latency can still be an issue

Arithmetic and Load/Store pipes

¢ SIMD: Several components per operation
— 128-Dbit registers

¢ VVLIW: Several operations per instruction word
— Some operations are “free”

125 bit

L]
E K
- -
"
- . -

. - “ ™

. -
L

|

.

.. %‘.\

. Hardware Counte

b ' .‘
" l" 4
"

Hardware Counters

¢ Counters per core

— Active Cycles
— Pipe activity
— L1 cache

¢ Counters per Core Group
— L2 caches

e Counters for the GPU

— Active cycles

¢ Accessed through Streamline™
— Timeline of all hardware counters, and more
— Explore the execution of the full application
— Zoom in on details

Streamline

CP
O
L
GPU Vertes

@

Mali Arithmetic Pipe

Mali Job I

O

036142
O 8333
013818
Q18208

Mali Load/Store Cache & 27370

» @953
@ 5154
¢ @ 4726
]

Mali Load re Pipe 178316
[(131,755

| L

|
s
|_ B
.A_
\ '
: /..
5 A,
.

e Optimizing
with Streamline and Harw& Cow%

\

),

/l

-

Memories

¢ Only one programmer controlled memory
— Many transparent caches

¢ Memory copying takes time
— It can easily dominate over kernel execution time

¢ Use appropriate memory allocation schemes

¢ Avoid synchronization points
— Cache maintenance has a cost as well

e Streamline to the rescue

— Visualize when kernels are executed
— Many features not covered here

Hiding Pipeline Latency

¢ Needs enough threads
— Limited by register usage

¢ \When there are issues

— Few instructions issued per cycle
— Spilling of values to memory

¢ Symptoms
— Low Max Local Workgroup Size in OpenCL
— Few instructions issued per cycle in limiting pipe

¢ Remedy

— Smaller types - More values per register
— Splitting kernels

Pipeline Utilization

¢ Prefer vector operations
— More components per operation

¢ Prefer small types
— More components in 128 bits

¢ Balance work between the pipes
— Do less — with the pipe that limits performance

T =max(A, A, LS, Tex)

Finding the Bottlenecks

¢ Host application or Kernel execution
— Avoid memory copying
— Avoid cache flushes

¢ Which pipe Is important?
— QOperations in other pipes incur little or no runtime cost

e Saving operations or saving registers

— How much register pressure can we handle, and still hide the
latencies?

¢ How well are we using the caches
— Are instructions spinning around the LS pipe waiting for data?

-

plimiZing k.
Two examp ‘

4

The Limiting Pipe

e Three hardware counters

— Cycles active (#C)
— Number of A instructions (#A)
— Number of LS instructions (#LS)

¢ The goal
— Similar values for #A and #LS - Both pipes used
— Max(#A, #LS) similar to #C - Limiting pipe used every cycle

e Example: _ _
~ #LS/#A=5 y=aX+y

— #LS/#A =1, #C up by < 10%

y =0.05ax + 0.05ax +0.05ax +...+0.05ax + y

Cache Utilization

¢ The Load/Store pipe hides latency

— Many threads active

¢ Not always successful

— Insufficient parallelism
— Bad cache utilization
— Falling threads will be reissued

¢ Reissue Is a sign of cache-misses

— Instruction words issued
— Instruction words completed

e Example
— Inter-thread stride for memory accesses

Execution Order

¢ Kernel saxpy
— Load from x

— Load fromy y
— Compute

— Storetoy

H
|
<l

¢ Execution order
— Threads 1 through N load from x
— Threads 1 through N load fromy
— Threads 1 through N compute
— Threads 1 through N store to y

¢ How many bytes should we load per thread?

A Single Instruction Word

¢ \We should have one load instruction word
— The next bytes will be picked up by the next thread

¢ | oading less is bad
— Does not utilize the SIMD operations

¢ | oading more is bad

— The next bytes will be loaded after all other threads have loaded
their first

e Saxpy with different strides
— 128 hits: 4.5 issues per instruction
— 256 hits: 5.5 issues per instruction
— 64 bytes: 9.3 issues per instruction

-

.. 0 .\‘:':.
Optimizing
General Ad 'c‘ ' LN

Know your bottleneck

¢ Use vector operations

e [f you are bandwidth-limited, merge kernels
— Avoid reloading data

e |[f you are register-limited, split kernels
— Easier for the compiler to do a good job

¢ |f you are Load-Store-limited, do less load-store
— Compute complex expressions instead of using lookup-tables

e |[f you are Arithmetic-limited, do less arithmetic

— Tabulate functions
— Use polynomial approximations instead of special functions

A =

ARM ﬁ
TechCon-

Where Inteﬂigence Connects

K 3 UBM
Tech

. B

L
Optimizing Compute Kernel
for Mobtle GPUs

Johan Grongvist

]

Synchronization between threads

¢ Two options in OpenCL

— Barriers inside a work-group
— Atomics between work-groups

¢ We like atomics to ensure data consistency
— But preferably on the same core

e Barriers can be useful to improve cache utilization

— Limit divergence between threads
— Keeping jobs small serves the same purpose

¢ We see examples of large jobs with many barriers
— We often prefer small jobs with dependencies

Vectorize your operations

e More components per operation

— For basic arithmetic and memory operations
— Square roots, trigonometry and atomics are scalar

¢ Fewer registers used
— The compiler will only do part of the job

1B 1g B8 1ela|E|la|lag|lg|lE|lg|la]lz]5]I]5

IMT16

IMT16

IMT 16

IMT16

IMT16

[T 16

INT 32

IMT 32

IMT32

[T

FF1G | FF16G
FF32

FFR1G | FFIG
FF32

FP16 | FPI6
FP32

FP64

125 bit

