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e Khronos standard

¢ Heterogeneous Systems

¢ General and Low-level
— Explicit device selection
— Explicit memory management
— Explicit kernel object management



RenderScript

¢ The GPU-Compute API on Android™
¢ Assumes CPU and GPU only

e Transparent device selection
— The driver manages and selects devices

¢ Transparent memory management
— Copying managed by the driver, based on allocation flags

¢ Higher level than OpenCL

— Less explicit control over details
— Know your driver!
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GPGPU on the Midgard Architecture
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Inside a Core

T =max( A, A, LS, Tex)



Latency Hiding by Parallelism

¢ Executing a program on an ARM Cortex®- A15
CPU

— Execution of consecutive instructions overlap in time
— Instruction latencies and branch predictions are important

¢ Executing a kernel on a ARM Mali-Texx GPU

— Execution of different threads overlap in time
— Execution of different instructions of a single thread never overlap

¢ This leads to latency tolerance
— No need for branch predictors
— No need to worry about pipeline latencies
— Memory latency can still be an issue



Arithmetic and Load/Store pipes

¢ SIMD: Several components per operation
— 128-Dbit registers

¢ VVLIW: Several operations per instruction word
— Some operations are “free”

125 bit
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Hardware Counters

¢ Counters per core

— Active Cycles
— Pipe activity
— L1 cache

¢ Counters per Core Group
— L2 caches

e Counters for the GPU

— Active cycles

¢ Accessed through Streamline™
— Timeline of all hardware counters, and more
— Explore the execution of the full application
— Zoom in on details
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Memories

¢ Only one programmer controlled memory
— Many transparent caches

¢ Memory copying takes time
— It can easily dominate over kernel execution time

¢ Use appropriate memory allocation schemes

¢ Avoid synchronization points
— Cache maintenance has a cost as well

e Streamline to the rescue

— Visualize when kernels are executed
— Many features not covered here



Hiding Pipeline Latency

¢ Needs enough threads
— Limited by register usage

¢ \When there are issues

— Few instructions issued per cycle
— Spilling of values to memory

¢ Symptoms
— Low Max Local Workgroup Size in OpenCL
— Few instructions issued per cycle in limiting pipe

¢ Remedy

— Smaller types - More values per register
— Splitting kernels



Pipeline Utilization

¢ Prefer vector operations
— More components per operation

¢ Prefer small types
— More components in 128 bits

¢ Balance work between the pipes
— Do less — with the pipe that limits performance

T =max( A, A, LS, Tex)



Finding the Bottlenecks

¢ Host application or Kernel execution
— Avoid memory copying
— Avoid cache flushes

¢ Which pipe Is important?
— QOperations in other pipes incur little or no runtime cost

e Saving operations or saving registers

— How much register pressure can we handle, and still hide the
latencies?

¢ How well are we using the caches
— Are instructions spinning around the LS pipe waiting for data?
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The Limiting Pipe

e Three hardware counters

— Cycles active (#C)
— Number of A instructions (#A)
— Number of LS instructions (#LS)

¢ The goal
— Similar values for #A and #LS - Both pipes used
— Max(#A, #LS) similar to #C - Limiting pipe used every cycle

e Example: _ _
~ #LS/#A=5 y=aX+y

— #LS/#A =1, #C up by < 10%

y =0.05ax + 0.05ax +0.05ax +...+0.05ax + y



Cache Utilization

¢ The Load/Store pipe hides latency

— Many threads active

¢ Not always successful

— Insufficient parallelism
— Bad cache utilization
— Falling threads will be reissued

¢ Reissue Is a sign of cache-misses

— Instruction words issued
— Instruction words completed

e Example
— Inter-thread stride for memory accesses



Execution Order

¢ Kernel saxpy
— Load from x

— Load fromy y
— Compute

— Storetoy
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¢ Execution order
— Threads 1 through N load from x
— Threads 1 through N load fromy
— Threads 1 through N compute
— Threads 1 through N store to y

¢ How many bytes should we load per thread?



A Single Instruction Word

¢ \We should have one load instruction word
— The next bytes will be picked up by the next thread

¢ | oading less is bad
— Does not utilize the SIMD operations

¢ | oading more is bad

— The next bytes will be loaded after all other threads have loaded
their first

e Saxpy with different strides
— 128 hits: 4.5 issues per instruction
— 256 hits: 5.5 issues per instruction
— 64 bytes: 9.3 issues per instruction
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Know your bottleneck

¢ Use vector operations

e [f you are bandwidth-limited, merge kernels
— Avoid reloading data

e |[f you are register-limited, split kernels
— Easier for the compiler to do a good job

¢ |f you are Load-Store-limited, do less load-store
— Compute complex expressions instead of using lookup-tables

e |[f you are Arithmetic-limited, do less arithmetic

— Tabulate functions
— Use polynomial approximations instead of special functions
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Synchronization between threads

¢ Two options in OpenCL

— Barriers inside a work-group
— Atomics between work-groups

¢ We like atomics to ensure data consistency
— But preferably on the same core

e Barriers can be useful to improve cache utilization

— Limit divergence between threads
— Keeping jobs small serves the same purpose

¢ We see examples of large jobs with many barriers
— We often prefer small jobs with dependencies



Vectorize your operations

e More components per operation

— For basic arithmetic and memory operations
— Square roots, trigonometry and atomics are scalar

¢ Fewer registers used
— The compiler will only do part of the job
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