
1

Hi! I’m Jan-Harald. This is joint work with Marius, Sam, and Sandeep. The bulk of this
presentation was prepared by Marius, who is unfortunately not able to attend this
conference, so I’ll do my best to cover in his absence.

So before we dive in, I just want to clarify what we mean by “Tile Local Storage”. As you
probably know, tile-based GPUs are very common* in mobile. What these GPUs have in
common is that they split the framebuffer processing into multiple regions, called tiles, that
are processed one at the time. As part of this they will have some amount of on-chip memory
that is used to store color, depth, and stencil values for the tile that is being processed. The
obvious benefit of this approach is that there is no need to write to external memory (main
memory) for every fragment that is processed. Instead, all writes go to the on-chip buffer
until all processing for the tile is completed and then the contents of the entire tile is written
back to memory. It is this on-chip memory we refer to as Tile Local Storage (TLS).

During normal rendering, TLS contents are typically loaded/stored to/from main memory
whenever you begin/end rendering a tile – but it’s possible to deviate from this. The memory
can instead be exposed more directly and the loading/storing can be managed explicitly.

Today we’ll look at how TLS and the various extensions that expose it can be used to do
efficient deferred rendering and approximate order-independent transparency. We’ll also
spend some time examining where this technology could go next.

* (Side note – actually the vast majority of all GPUs in the world are tile-based due to the
massive volumes mobile GPUs ship in!)

2

Last year we presented our work to expose and use TLS. We built a custom driver on
a development board with an experimental extension called the “raw tile buffer”. We
experimented with a range of rendering techniques and demonstrated deferred
rendering running on a mobile device with a dramatic reduction in memory
bandwidth compared to traditional deferred rendering using multiple offscreen
render targets.

Since that talk the extension was revised and the newer version renamed as
EXT_shader_pixel_local_storage. As part of this it gained cross-vendor
support with backing and contributions from Imagination Technologies.

Details of the extension on the Khronos registry are available here:
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_stora
ge.txt

Further discussion can be found here:
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-
storage-on-arm-mali-gpus

And sample code using it can be found here:
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-
storage-sample/

3

https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_storage.txt
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-storage-sample/

A couple of other things has also happened since our presentation last year.

An existing extension, EXT_framebuffer_fetch, was also updated to support MRTs and
more flexible precision controls and now also enables access to TLS when used on an
OpenGL ES 3.0 device.

However, it does not have the same set of functionality as PLS. In this talk we will
compare and contrast the two extensions.

Recently, Apple announced a new low level graphics API, “Metal”. This API also
exposes some features related to TLS that we will mention later.

4

So today we will:
- Look at these extensions in more detail, and compare/contrast their feature sets
- We’ll look at how bandwidth-efficient deferred rendering can be achieved with

these extensions.
- Then look at how approximate order-independent transparency (AOIT) can be

adapted to use TLS. We’ll look at several possible implementations based on pixel
local storage and how these techniques compare in terms of quality and efficiency.

- Pixel local storage is unique in that it allows more flexible chaining of techniques
without going “off-chip”. We will show how deferred rendering was combined with
AOIT in a single render pass.

- We’ll then conclude by looking at possible improvements of the technology and
future work.

5

6

Let’s take a closer look at framebuffer fetch extensions (FBF).

The EXT_shader_framebuffer_fetch extension differs between versions. OpenGL ES
2.0 didn’t support MRTs or int formats so framebuffer readback was quite limited and
couldn’t be used for techniques like deferred shading. It was primarily useful for
programmable blending. The extension was updated to work against OpenGL ES 3.0. At this
point MRTs, integer formats and the ability to override the default mediump precision
qualifier enabled it to support deferred rendering. It is commonly available on iOS for A7-
based devices.

In both cases EXT_shader_framebuffer_fetch allows you to readback the
framebuffer, but not the depth or stencil values. To readback depth it must be stored in one
of the MRTs at sufficient precision. MSAA framebuffers are supported but are expensive.

There are other closely related framebuffer readback extensions:
- ARM_shader_framebuffer_fetch provided an alternative to the OpenGL ES 2.0

variant of EXT_shader_framebuffer_fetch and differed in it’s handling of MSAA
framebuffer formats. What the most desirable behaviour of these extensions in the
presence of MSAA framebuffers should be is an interesting question that we will return to
towards the end of this talk. ARM_shader_framebuffer_fetch provides single
framebuffer readback but with a more efficient approximate MSAA path.

- The ARM FBF depth_stencil variation provided additional readback of the depth and
stencil buffer. This is a natural and useful extension of any framebuffer readback
extension and complements TLS by exposing more of the on-chip per-tile data.

7

Metal is a new rendering API introduced by Apple earlier this year. It’s only available
on iOS8 devices based on the A7 chip and onwards.

One of the major strengths of the new API is the ability to explicitly start and end
render passes with load/store actions. This allows an application to easily save
bandwidth and computation by removing unwanted loads and stores. It also provides
clearer user intentions to the driver.

Compute shaders in Metal also expose the TLS memory explicitly as local threadgroup
memory. However data is not persistent beyond the workgroup and so cannot be
passed between workgroups or other kernels in a similar fashion to how computation
can be chained together with FBF or PLS.

The approach taken by framebuffer fetch and Metal are similar in the sense that in
both cases the storage format of the TLS memory is dictated by the render target
configuration. Once configured it is immutable for the lifetime of the render pass.

8

Pixel Local Storage (PLS) is a more flexible approach to exposing the TLS to the
fragment shader. The extension does not rely on the framebuffer configuration to
specify the storage format, and primarily impacts the GLSL code rather than the C
API.

With PLS enabled a shader can access the TLS memory as a per-pixel struct that is
persistent for the lifetime of the render pass. You would typically use this memory to
build up the final pixel color progressively using multiple shaders, with a final ‘resolve’
shader at the end to explicitly copy to the framebuffer output. The TLS is
automatically discarded once the tile is fully processed, so it has no impact on
external memory bandwidth. The only data that goes off-chip is the data you
explicitly copy to the ‘out’ variables, at which point the TLS data is invalidated.

On mobile, where you really want to stay on-chip and do everything in a single pass
to be energy efficient, this extension is a powerful tool for chaining computations and
reducing memory bandwidth.

Unlike the other extensions, each shader is allowed to declare its per-pixel ‘view’ of
the TLS as a struct. This allows you to re-interpret the data and change the view
between shaders. The per-pixel view of the TLS is completely independent of the
current framebuffer format, meaning that what’s flushed back to main memory in the
end will still conform to the current framebuffer format.

9

Here’s an example declaration of a PLS shader view.

The layout qualifier on the left is used to specify the data format of the individual PLS
variables. Currently all formats are 32-bits in size – that will likely not change in the
future. There is a larger number of formats supported for PLS variables than is
supported as framebuffer formats, including floating point and half float formats.

The precision and type specified in the middle describes the type the shader uses to
read/write to these variables. There is an implied conversion between this type and
the layout format when you read and write from your shader.

We recommend reading the extension spec if you want more information about the
supported formats, and how to use the extension.

10

11

Although slightly simplified, this is what the rendering pipeline looks like when using
PLS. Main memory is on the left and the on-chip tile resources are on the right.

As you can see there are basically two paths from the fragment shader to the TLS,
depending on whether it is storing PLS variables or framebuffer color data. One path
goes through the blender and the other allows direct read/write access. The key
point here is that it is still allowed to read from the PLS and output values through the
blender – this is required in order to be able to convert the stored PLS data to the
native framebuffer format when finally writing back to memory.

Note also that all operations on the PLS happen in fragment submission order. The
pipeline enforces this to ensure shaders execute in the intended sequence, which is
required for correct operation.

You may also note that the PLS variables and the framebuffer color share the same
memory location – so writing to one of them will discard the other.

12

FBF is close to the existing API and so may be the smallest delta for existing deferred
renderers. However it lacks the flexibility and additional storage formats of PLS as the
storage format is defined and fixed for the render pass by the render target
configuration. This is not an issue for deferred renderers, but does limit other
applications. The fixed storage format can also be a better fit some hardware.

FBF supports MSAA framebuffer formats, but does so by forcing per-sample shading.
This is required for correct operation but the cost of shading per-sample can be
prohibitive. Whether this is the best route in the future is something we are actively
debating and investigating.

The best known concern with FBF is the requirement to correctly place calls to
glInvalidateFramebuffer. Making a mistake will not affect rendering
behaviour and so is very difficult to detect in practice. The explicit load/store actions
demonstrated in Metal and PLS offer a more robust and semantically clear
alternative.

Pete Harris wrote a blog post describing how to correctly call
glInvalidateFramebuffer here:
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-
graphics-performance-2-how-to-correctly-handle-framebuffers

13

http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-graphics-performance-2-how-to-correctly-handle-framebuffers

PLS is still a simple delta to support from an existing deferred rendering setup, but
has clearer semantics and additional flexibility. We have found we can support
multiple variants of deferred rendering with the same shaders and modest use of
#defines in the shader code. It should also allow easier future extensions as PLS is
independent of the framebuffer configuration and C API.

The ability to change the per-pixel view the shader is unique to PLS, but can imply
require additional overhead. If the GPU has hardware to convert to the PLS storage
formats, and this hardware is not configured by or otherwise dependent upon the
framebuffer configuration, then the additional flexibility of PLS would have negligible
cost. However, some devices may need to perform software format conversions
where hardware does not exist or cannot be used independently of the framebuffer
configuration. If the use cases of PLS justify the hardware investment required this
should not be a concern in the longer term.

The more immediate limitations of the current PLS extension are the lack of MRT and
MSAA support. MRT support (the ability to resolve to multiple framebuffers) is a
comparatively simple addition and a likely future addition. As mentioned with FBF,
support for MSAA is not so straightforward. There are several options and we will
return to this discussion when we discuss future work.

14

We’ll now briefly review how deferred rendering can be achieved through these
extensions.

15

Last year, we investigated a variety of renderers using an early version of the PLS
extension. In this we saw significant bandwidth – and therefore energy savings – by
performing deferred rendering “on-chip”.

A possible limitation of deferred is that your material description must be decoupled
from the lighting evaluation by storing parameters in so called “g-buffers”. There are
alternatives where the materials and lights are computed in a single shader. While
these alternatives have been shown to be feasible in some settings they can be
limited by the resulting shader complexity if the number of light types and shadowing
options supported is large, and some (forward+ and lightstack) require depth to be
rendered in a first pass. This requires two submissions of the scene geometry which
naively requires twice the vertex processing and geometry bandwidth which is a
considerable overhead, particularly on a tile-based renderer.

As a result, although these options are clearly usable and have shipped in games,
they are not as practical across such a wide spectrum as deferred today, although
further innovation could improve this situation. For our purposes today we will focus
on deferred rendering. Deferred rendering also maps to all extensions and APIs we
have discussed.

16

The original Transporter demo was made in a pre-alpha build of Unity 5 using Enlighten. We
have reconstructed the scene from the source artwork in a custom deferred renderer.

The original demo used a simplified physically-based shader based on Brian Karis’
presentation in the Physically-Based Shading SIGGRAPH 2013 course (http://bit.ly/1kDCPsE) .
It uses indirect lightmaps and cubemaps from Enlighten with the same GGX-based material
response. The direct lighting is more basic as this is where computing the response would
become excessive on mobile platforms for large numbers of lights. (Fewer higher quality
lights would likely be feasible though.)

The original demo was a single-pass forward renderer that supported a maximum of 2
dynamic lights per object and dynamic emissive surfaces. Other direct light sources were
baked into lightmaps. In our reconstructed version we keep the same geometry, materials
and Enlighten setup but render all lights dynamically using the light geometry and well-
known stencil-culling trick. Using PLS we can support a HDR linear pipeline with the RGB10a2
storage format, or fp16 if we also use the ARM depth readback extension (which allows us to
avoid storing depth). As well as testing a lighting configuration similar to the original demo
with around 70 lights, we also benchmark using procedurally generated lights as has become
customary for deferred rendering demonstrations .

The demos are different enough that it does not make sense to compare them directly, but
both implementations run on the same device (a Samsung Note 10.1 2014 edition, with ARM
Mali-T628MP6 GPU) at real-time framerates. Reporting absolute performance figures are
also rather uninformative as the scene/lights/camera can be arbitrary adapted to suit! But as
a rule of thumb, tens of lights are certainly feasible with this level of scene and material
complexity on the GPU in question. We see significant bandwidth reductions (see last years
talk for figures) and performance increases on this more “real world” content when
comparing to traditional deferred rendering - indications of around 10-25% uplift overall. This
figure should be treated with some caution though as hardware has not yet been tuned to
content created with these use cases in mind and these extensions are still relatively new.

17

http://bit.ly/1kDCPsE
http://bit.ly/1kDCPsE

We can now look at how approximate OIT can also be restructured to use TLS, and
several possible implementations of it based on pixel local storage.

18

Order-independent transparency (OIT) is a well known challenge.

Several approximate OIT techniques have been presented recently.

The flexibility of PLS allows us to easily implement and test different OIT
approximations. So we implemented and compared two different algorithms, both
which are based on compressing fragment colors – Multi-layer alpha blending and
Adaptive Range blending.

19

Multi-layer alpha blending was introduced by Marco Salvi and is a real-time
approximate order independent transparency solution that operates in a single
rendering pass and in bounded memory. In other words a perfect fit for PLS.

It works by storing transmittance and depth, together with accumulated color in a
fixed number of layers. New fragments are inserted in order when possible and
merge when required. This way the strict ordering of requirements of alpha blending
can be somewhat relaxed.

Please see the Marco Salvi paper for more details about how this works.

20

We implemented two versions of Multi-Layer Alpha Blending for PLS, one with 2
layers and one with 3 layers.

They way these approaches work is that we accumulate the blended layers in the PLS,
then resolve them to a single output color at the end.

(The original paper used 4 layers, but we’re limited by the amount of pixel local
storage on current implementations.)

The one with 2 layers is partitioned with RGBA8 for color and 32-bit float for depth.

The 3 layer version stores the 3 colors as RGBA8, while the depth values are stored as
10-bit unsigned normalized values. This yields quite low precision for depth, but may
be OK for some scenes.

21

Another OIT algorithm we implemented was based on keeping track of the min/max
depth of the incoming fragments. The main motivation behind the idea was to
allocate more PLS space for color fragments and leave a fixed portion for keeping
track of min/max depth range. This works well in comparison to multi-layer alpha
blending when we have a small amount of storage space for fragments, but since it
only keeps track of the depth range it doesn’t scale as well as MLAB – especially when
the fragments are far apart and highly out of order.

22

For each incoming fragment the adaptive range algorithm compares the fragment
depth value to the current pixel depth range.

If the fragment is in front of the range, the existing stack of fragments are pushed
towards the end and the new fragment is inserted at the front. The fragment that
exits the stack is blended with the last fragment.
If the fragment is inside the range, it is blended with an existing fragment color
depending on its position inside the range.
If the fragment is behind the range it is simply blended with the last fragment on the
stack.

Depending on where the fragment hits the range, it is either used as destination or
source of the blend function.

23

For adaptive range the PLS is partitioned with a stack of 3 RGBA8 color values and 2
FP16 values for keeping track of the depth range.

24

To compare the OIT approximations we implemented a reference OIT implementation
using depth peeling. We can use PLS for this by keeping track of previous and current
minimum depth together with their corresponding color values. It requires that we
draw the object multiple times until all layers have been rendered, so it might not be
usable for real-time applications.

Fixed function alpha blending is used to compare typical image quality.

Note: all the reference images are rendered using depth peeling with 20 layers, so in
order to match the reference quality we would need to be able to store at least that
many layers in PLS.

25

Here’s our reference frame.
Note that we’re not using the typical particle cloud test-scene here. Our test scene
will make errors more apparent.

26

Alpha blending obviously doesn’t get it right.

27

Even 2 layers is much better, but we observe an obvious artifact on the lower left
sphere.

28

No obvious depth artifacts here, but colors aren’t quite right.

29

3 layers gets us closer, but some depth artifacts on the middle sphere

30

31

We measured the performance of the different OIT implementations running 3
different scenes.

The synthetic test shades is an extreme test that shades a total of 46.4M fragments.
Dragon far is our deferred shading implementation chained with OIT – with the
transparent geometry at some distance.
Dragon near is the same scene but with the transparent geometry covering more of
the screen.

32

Performance comparison between the different implementations running different
content. The performance numbers have been normalized in comparison to alpha
blended rendering. These results are from a Note 10.1 device running a Mali-
T628MP6 GPU.

As you can see the MLAB algorithms scale down in performance when increasing the
number of layers – this is expected. The adaptive range algorithm achieves the
highest performance, while quality-wise it’s somewhere between MLAB2 and MLAB3.

33

34

PLS allows us to chain techniques together. This makes combining techniques such as
deferred shading and order-independent transparency very easy.

In the above schematics we have a regular deferred shading opaque phase which fills
up the PLS G-buffer, accumulate lights and resolve. After this is done we render all
transparent geometry using OIT. For this we repartition the layout of the PLS
according to the different OIT algorithm we tested.

This is what makes PLS unique - the ability to chain complex techniques together
without hitting external memory. We achieve this by repartitioning the TLS. All
processing – up to the final color resolve - is completely independent of the output
framebuffer format.

35

Deferred Shading with reference OIT

36

Deferred shading with regular alpha blending

37

Deferred shading with approximated OIT using the adaptive range algorithm

38

Deferred shading with Multi-Layer alpha blending

This gives visually good results – fairly close to the reference.

Note that with TLS this and the preceding adaptive range example can both be
rendered in a single pass.

39

Deferred Shading with reference OIT

40

41

With more TLS we could have gone beyond 3 layers of MLAB. So lets examine that controls
the amount of data available per-pixel.

The amount of per-pixel TLS available on the GPU we tested with is 128-bits/pixel - the
minimum required by both FBF and PLS - which at a tile size of 16x16 is 4k of TLS in total. The
PLS extension allows the exact amount to be specified by the implementation and is reported
to the application by querying MAX_SHADER_PIXEL_LOCAL_STORAGE_FAST_SIZE_EXT. It
would therefore be very simple to add additional TLS and access it through the existing PLS
extension. In comparison exposing additional memory through the FBF extension would
require an updated extension as it would require > 4 simultaneous MRTs, which impacts the
C API and requires more changes from the application.

Another way to provide additional TLS memory per-pixel would be to change the tile size
used during rendering. This would not require additional GPU memory, is already possible in
some architectures and is supported by the existing PLS extension while FBF would require
extending for the same reasons described above. The same number of fragment threads
would execute as before but with higher per-tile overheads. (Or conversely for smaller PLS
footprints we can employ larger tile sizes.)

In both scenarios we see advantages in decoupling the amount of TLS available per-pixel from
the framebuffer configuration.

In the PLS extension, we refer to TLS as ‘fast’ memory. Imagination Technologies
recommended and we have adopted supporting ‘normal’ PLS variables in the extension.
Normal PLS variables are likely to map to cached main memory in practice. They have the
same lifetime and formats as their fast siblings and differ only in performance. In principle, a
example use case of this would be full OIT where pixels that require more storage than TLS
allows could spill to cache. Fully exploring the potential of ‘normal’ PLS variables is future
work.

42

Let’s turn to MSAA.

In order to implement 4xMSAA tile-based GPUs typically use 4x the non-MSAA
storage to keep the per-sample results before blending them together when
resolving. So when working with 4xMSAA on 4 MRTs you need the equivalent storage
of 16 MRTs. If you want to use these extensions and get correct results you’d also
require 4x the computation as doing so implies per-sample shading. AA is an essential
component of modern graphics, but MSAA is only part of the AA picture and at these
costs we would like to also considering whether a different geometry anti-aliasing
strategy is required.

As of today, PLS does not support MSAA and can only be enabled on non-MSAA
framebuffers. We have examined some possible ways of incorporating it but have not
yet settled on an approach. This is future work.

FBF does the “correct” thing but we suspect 4x the shading cost is likely to be
prohibitive in practice.

ARM_shader_framebuffer_fetch does not support MRT but does present a
possible alternative for MSAA handling. It approximates the true result by producing
an approximate average (approximate in the sense that is does not always return the
result true MSAA would do). It still requires 4x storage but does not need to run
shading at sample rates. Whether this approximate approach is suitable for enough
uses cases is the main question to answer.

43

We would like to ask, “do we really need MSAA?”

Graphics certainly does need AA, but 4xMSAA only has a modest impact. In particular, it has
no impact on aliasing related to shader output - something which is especially visible in
physically-based shading where smaller highlights are more common. It is also likely to be
unaffordable at higher rates.

Techniques such as FXAA have shown that it’s quite possible to address some aliasing
problem entirely in image space (contrary to everything you may have learned from signal
processing lessons!). But these techniques also require large amounts of memory bandwidth
especially at higher resolutions. An advantage of the existing MSAA implementation on Mali
GPUs is that it doesn’t incur any extra memory bandwidth.

One option could be to ignore MSAA altogether when using PLS. This would allow PLS to be
compatible with MSAA buffers but all shading would occur per-fragment.

We could also allow per-sample shading, but with the costs outlined earlier.

We could allow applications to specify MSAA per PLS variable using additional qualifiers. This
would allow much finer grained control. Particularly for PLS where the view can be changed
per-shader and not everything you are likely to store in TLS would want MSAA (e.g. an array
of indices such as we employed in the lightstack renderer). This appears to be a better fit for
PLS but it does introduce a considerable amount of extra complexity.

Supporting more than one of these options is also a possibility.

44

MSAA is an “all or nothing” approach. You either do it globally or not at all. As MSAA
only affects the results of a minority of pixels there’s clearly room for improvement
by performing work only where it’s required.

Tiago Souza from Crytech described a related technique in:
http://www.crytek.com/download/Sousa_Graphics_Gems_CryENGINE3.pdf
In brief, they create a custom per-sample mask which they write to the stencil buffer.
This mask is then used to select whether a shader should be run per-pixel or per-
sample. It’s possible to imagine that a similar approach could reduce the computation
in our setting.

Another promising option is Coarse Pixel Shading. This introduces a logical extra
shading stage for coarse pixels, and makes decisions on a per-tile basis as to what
resolution coarse pixel shading operates at. There are many other works on multi-rate
shading. We may find that combining PLS with some form of multi-rate shading
provides a better long term solution, but this is future work.

45

http://www.crytek.com/download/Sousa_Graphics_Gems_CryENGINE3.pdf
http://www.crytek.com/download/Sousa_Graphics_Gems_CryENGINE3.pdf

In summary, we have seen how existing technology and extensions can be used to
implement deferred shading, approximate OIT, as well as combining them into a
single pass in a very bandwidth efficient manner.

In the future:
 - We would like to explore the convergence of PLS/MSAA/Coarse. The idea being that
work can be done at a variable rate.
 - We’d obviously like to see these technologies be widely adopted, whether that’s in
the current form or a different variation.
 - All TLS-related extensions assume a well defined framebuffer lifetime. In Metal this
is explicit but in the current OpenGL/ES standards this is implicit. We would very
much like to see explicit lifetimes in graphics APIs.
 - A generalization of the PLS ideas to GPU compute, by which we mean “fragment
shader compute”, in contrast to say, OpenCL with local memory. We’d want compute
shaders create the input data for the compute state using the rasterizer.

46

Thanks! If you have any questions or feedback please do get in contact.

47

48

49

We also looked into using PLS to store physical texture coordinates. This way we can
defer most texture lookups until a resolve phase. Note that we still had to lookup into
the pagetable and convert virtual to physical coordinate conversion.

The idea behind this was to only do texture lookups on fragments that that contribute
to the output. Our experiments, however, showed that we didn’t get any
performance benefits from this – the performance was mostly the same. This can
largely be attributed to Forward Pixel Kill, a HW feature in the Mali-T62x series of
GPUs which rejects fragments early if the GPU finds that they are covered by a
different opaque fragment.

50

