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Hi! I’m Jan-Harald. This is joint work with Marius, Sam, and Sandeep. The bulk of this 
presentation was prepared by Marius, who is unfortunately not able to attend this 
conference, so I’ll do my best to cover in his absence. 
 
So before we dive in, I just want to clarify what we mean by “Tile Local Storage”. As you 
probably know, tile-based GPUs are very common* in mobile. What these GPUs have in 
common is that they split the framebuffer processing into multiple regions, called tiles, that 
are processed one at the time. As part of this they will have some amount of on-chip memory 
that is used to store color, depth, and stencil values for the tile that is being processed. The 
obvious benefit of this approach is that there is no need to write to external memory (main 
memory) for every fragment that is processed. Instead, all writes go to the on-chip buffer 
until all processing for the tile is completed and then the contents of the entire tile is written 
back to memory. It is this on-chip memory we refer to as Tile Local Storage (TLS).  
 
During normal rendering, TLS contents are typically loaded/stored to/from main memory 
whenever you begin/end rendering a tile – but it’s possible to deviate from this. The memory 
can instead be exposed more directly and the loading/storing can be managed explicitly.  
 
Today we’ll look at how TLS and the various extensions that expose it can be used to do 
efficient deferred rendering and approximate order-independent transparency. We’ll also 
spend some time examining where this technology could go next. 
 
* (Side note – actually the vast majority of all GPUs in the world are tile-based due to the 
massive volumes mobile GPUs ship in!) 
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Last year we presented our work to expose and use TLS. We built a custom driver on 
a development board with an experimental extension called the “raw tile buffer”.  We 
experimented with a range of rendering techniques and demonstrated deferred 
rendering running on a mobile device with a dramatic reduction in memory 
bandwidth compared to traditional deferred rendering using multiple offscreen 
render targets. 
 
Since that talk the extension was revised and the newer version renamed as 
EXT_shader_pixel_local_storage. As part of this it gained cross-vendor 
support with backing and contributions from Imagination Technologies.  
 
Details of the extension on the Khronos registry are available here: 
https://www.khronos.org/registry/gles/extensions/EXT/EXT_shader_pixel_local_stora
ge.txt 
 
Further discussion can be found here: 
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-
storage-on-arm-mali-gpus 
 
And sample code using it can be found here: 
http://malideveloper.arm.com/develop-for-mali/sample-code/shader-pixel-local-
storage-sample/ 
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A couple of other things has also happened since our presentation last year. 
 
An existing extension, EXT_framebuffer_fetch, was also updated to support MRTs and 
more flexible precision controls and now also enables access to TLS when used on an 
OpenGL ES 3.0 device.  
 
However, it does not have the same set of functionality as PLS. In this talk we will 
compare and contrast the two extensions. 
 
Recently, Apple announced a new low level graphics API, “Metal”. This API also 
exposes some features related to TLS that we will mention later. 
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So today we will: 
- Look at these extensions in more detail, and compare/contrast their feature sets 
- We’ll look at how bandwidth-efficient deferred rendering can be achieved with 

these extensions. 
- Then look at how approximate order-independent transparency (AOIT) can be 

adapted to use TLS. We’ll look at several possible implementations based on pixel 
local storage and how these techniques compare in terms of quality and efficiency. 

- Pixel local storage is unique in that it allows more flexible chaining of techniques 
without going “off-chip”. We will show how deferred rendering was combined with 
AOIT in a single render pass. 

- We’ll then conclude by looking at possible improvements of the technology and 
future work. 
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Let’s take a closer look at framebuffer fetch extensions (FBF). 
 
The EXT_shader_framebuffer_fetch extension differs between versions. OpenGL ES 
2.0 didn’t support MRTs or int formats so framebuffer readback was quite limited and 
couldn’t be used for techniques like deferred shading. It was primarily useful for 
programmable blending. The extension was updated to work against OpenGL ES 3.0. At this 
point MRTs, integer formats and the ability to override the default mediump precision 
qualifier enabled it to support deferred rendering. It is commonly available on iOS for A7-
based devices.  
 
In both cases EXT_shader_framebuffer_fetch allows you to readback the 
framebuffer, but not the depth or stencil values. To readback depth it must be stored in one 
of the MRTs at sufficient precision. MSAA framebuffers are supported but are expensive. 
 
There are other closely related framebuffer readback extensions: 
- ARM_shader_framebuffer_fetch provided an alternative to the OpenGL ES 2.0 

variant of EXT_shader_framebuffer_fetch and differed in it’s handling of MSAA 
framebuffer formats. What the most desirable behaviour of these extensions in the 
presence of MSAA framebuffers should be is an interesting question that we will return to 
towards the end of this talk. ARM_shader_framebuffer_fetch provides single 
framebuffer readback but with a more efficient approximate MSAA path. 

- The ARM FBF depth_stencil variation provided additional readback of the depth and 
stencil buffer. This is a natural and useful extension of any framebuffer readback 
extension and complements TLS by exposing more of the on-chip per-tile data. 
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Metal is a new rendering API introduced by Apple earlier this year. It’s only available 
on iOS8 devices based on the A7 chip and onwards. 
 
One of the major strengths of the new API is the ability to explicitly start and end 
render passes with load/store actions. This allows an application to easily save 
bandwidth and computation by removing unwanted loads and stores. It also provides 
clearer user intentions to the driver. 
 
Compute shaders in Metal also expose the TLS memory explicitly as local threadgroup 
memory. However data is not persistent beyond the workgroup and so cannot be 
passed between workgroups or other kernels in a similar fashion to how computation 
can be chained together with FBF or PLS.  
 
The approach taken by framebuffer fetch and Metal are similar in the sense that in 
both cases the storage format of the TLS memory is dictated by the render target 
configuration. Once configured it is immutable for the lifetime of the render pass.  
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Pixel Local Storage (PLS) is a more flexible approach to exposing the TLS to the 
fragment shader. The extension does not rely on the framebuffer configuration to 
specify the storage format, and primarily impacts the GLSL code rather than the C 
API. 
 
With PLS enabled a shader can access the TLS memory as a per-pixel struct that is 
persistent for the lifetime of the render pass. You would typically use this memory to 
build up the final pixel color progressively using multiple shaders, with a final ‘resolve’ 
shader at the end to explicitly copy to the framebuffer output. The TLS is 
automatically discarded once the tile is fully processed, so it has no impact on 
external memory bandwidth. The only data that goes off-chip is the data you 
explicitly copy to the ‘out’ variables, at which point the TLS data is invalidated. 
 
On mobile, where you really want to stay on-chip and do everything in a single pass 
to be energy efficient, this extension is a powerful tool for chaining computations and 
reducing memory bandwidth. 
 
Unlike the other extensions, each shader is allowed to declare its per-pixel ‘view’ of 
the TLS as a struct. This allows you to re-interpret the data and change the view 
between shaders. The per-pixel view of the TLS is completely independent of the 
current framebuffer format, meaning that what’s flushed back to main memory in the 
end will still conform to the current framebuffer format. 
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Here’s an example declaration of a PLS shader view.  
 
The layout qualifier on the left is used to specify the data format of the individual PLS 
variables. Currently all formats are 32-bits in size – that will likely not change in the 
future. There is a larger number of formats supported for PLS variables than is 
supported as framebuffer formats, including floating point and half float formats. 
 
The precision and type specified in the middle describes the type the shader uses to 
read/write to these variables. There is an implied conversion between this type and 
the layout format when you read and write from your shader.  
 
We recommend reading the extension spec if you want more information about the 
supported formats, and how to use the extension. 
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Although slightly simplified, this is what the rendering pipeline looks like when using 
PLS. Main memory is on the left and the on-chip tile resources are on the right. 
 
As you can see there are basically two paths from the fragment shader to the TLS, 
depending on whether it is storing PLS variables or framebuffer color data. One path 
goes through the blender and the other allows direct read/write access. The key 
point here is that it is still allowed to read from the PLS and output values through the 
blender – this is required in order to be able to convert the stored PLS data to the 
native framebuffer format when finally writing back to memory. 
 
Note also that all operations on the PLS happen in fragment submission order. The 
pipeline enforces this to ensure shaders execute in the intended sequence, which is 
required for correct operation.  
 
You may also note that the PLS variables and the framebuffer color share the same 
memory location – so writing to one of them will discard the other. 
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FBF is close to the existing API and so may be the smallest delta for existing deferred 
renderers. However it lacks the flexibility and additional storage formats of PLS as the 
storage format is defined and fixed for the render pass by the render target 
configuration. This is not an issue for deferred renderers, but does limit other 
applications. The fixed storage format can also be a better fit some hardware. 
 
FBF supports MSAA framebuffer formats, but does so by forcing per-sample shading. 
This is required for correct operation but the cost of shading per-sample can be 
prohibitive. Whether this is the best route in the future is something we are actively 
debating and investigating. 
 
The best known concern with FBF is the requirement to correctly place calls to 
glInvalidateFramebuffer. Making a mistake will not affect rendering 
behaviour and so is very difficult to detect in practice. The explicit load/store actions 
demonstrated in Metal and PLS offer a more robust and semantically clear 
alternative. 
 
Pete Harris wrote a blog post describing how to correctly call 
glInvalidateFramebuffer here: 
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/28/mali-
graphics-performance-2-how-to-correctly-handle-framebuffers 
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PLS is still a simple delta to support from an existing deferred rendering setup, but 
has clearer semantics and additional flexibility. We have found we can support 
multiple variants of deferred rendering with the same shaders and modest use of 
#defines in the shader code. It should also allow easier future extensions as PLS is 
independent of the framebuffer configuration and C API.  
 
The ability to change the per-pixel view the shader is unique to PLS, but can imply 
require additional overhead. If the GPU has hardware to convert to the PLS storage 
formats, and this hardware is not configured by or otherwise dependent upon the 
framebuffer configuration, then the additional flexibility of PLS would have negligible 
cost. However, some devices may need to perform software format conversions 
where hardware does not exist or cannot be used independently of the framebuffer 
configuration. If the use cases of PLS justify the hardware investment required this 
should not be a concern in the longer term. 
 
The more immediate limitations of the current PLS extension are the lack of MRT and 
MSAA support. MRT support (the ability to resolve to multiple framebuffers) is a 
comparatively simple addition and a likely future addition. As mentioned with FBF, 
support for MSAA is not so straightforward. There are several options and we will 
return to this discussion when we discuss future work. 
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We’ll now briefly review how deferred rendering can be achieved through these 
extensions. 
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Last year, we investigated a variety of renderers using an early version of the PLS 
extension. In this we saw significant bandwidth – and therefore energy savings – by 
performing deferred rendering “on-chip”. 
 
A possible limitation of deferred is that your material description must be decoupled 
from the lighting evaluation by storing parameters in so called “g-buffers”. There are 
alternatives where the materials and lights are computed in a single shader. While 
these alternatives have been shown to be feasible in some settings they can be 
limited by the resulting shader complexity if the number of light types and shadowing 
options supported is large, and some (forward+ and lightstack) require depth to be 
rendered in a first pass. This requires two submissions of the scene geometry which 
naively requires twice the vertex processing and geometry bandwidth which is a 
considerable overhead, particularly on a tile-based renderer.  
 
As a result, although these options are clearly usable and have shipped in games, 
they are not as practical across such a wide spectrum as deferred today, although 
further innovation could improve this situation. For our purposes today we will focus 
on deferred rendering. Deferred rendering also maps to all extensions and APIs we 
have discussed. 
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The original Transporter demo was made in a pre-alpha build of Unity 5 using Enlighten. We 
have reconstructed the scene from the source artwork in a custom deferred renderer. 
 
The original demo used a simplified physically-based shader based on Brian Karis’ 
presentation in the Physically-Based Shading SIGGRAPH 2013 course (http://bit.ly/1kDCPsE) . 
It uses indirect lightmaps and cubemaps from Enlighten with the same GGX-based material 
response. The direct lighting is more basic as this is where computing the response would 
become excessive on mobile platforms for large numbers of lights. (Fewer higher quality 
lights would likely be feasible though.) 
 
The original demo was a single-pass forward renderer that supported a maximum of 2 
dynamic lights per object and dynamic emissive surfaces. Other direct light sources were 
baked into lightmaps. In our reconstructed version we keep the same geometry, materials 
and Enlighten setup but render all lights dynamically using the light geometry and well-
known stencil-culling trick. Using PLS we can support a HDR linear pipeline with the RGB10a2 
storage format, or fp16 if we also use the ARM depth readback extension (which allows  us to 
avoid storing depth). As well as testing a lighting configuration similar to the original demo 
with around 70 lights, we also benchmark using procedurally generated lights as has become 
customary for deferred rendering demonstrations .  
 
The demos are different enough that it does not make sense to compare them directly, but 
both implementations run on the same device (a Samsung Note 10.1 2014 edition, with ARM 
Mali-T628MP6 GPU) at real-time framerates. Reporting absolute performance figures are 
also rather uninformative as the scene/lights/camera can be arbitrary adapted to suit! But as 
a rule of thumb, tens of lights are certainly feasible with this level of scene and material 
complexity on the GPU in question. We see significant bandwidth reductions (see last years 
talk for figures) and performance increases on this more “real world” content when 
comparing to traditional deferred rendering - indications of around 10-25% uplift overall. This 
figure should be treated with some caution though as hardware has not yet been tuned to 
content created with these use cases in mind and these extensions are still relatively new. 
 

17 

http://bit.ly/1kDCPsE
http://bit.ly/1kDCPsE


We can now look at how approximate OIT can also be restructured to use TLS, and 
several possible implementations of it based on pixel local storage. 
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Order-independent transparency (OIT) is a well known challenge. 
 
Several approximate OIT techniques have been presented recently. 
 
The flexibility of PLS allows us to easily implement and test different OIT 
approximations. So we implemented and compared two different algorithms, both 
which are based on compressing fragment colors – Multi-layer alpha blending and 
Adaptive Range blending. 
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Multi-layer alpha blending was introduced by Marco Salvi and is a real-time 
approximate order independent transparency solution that operates in a single 
rendering pass and in bounded memory. In other words a perfect fit for PLS. 
 
It works by storing transmittance and depth, together with accumulated color in a 
fixed number of layers. New fragments are inserted in order when possible and 
merge when required. This way the strict ordering of requirements of alpha blending 
can be somewhat relaxed. 
 
Please see the Marco Salvi paper for more details about how this works. 
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We implemented two versions of Multi-Layer Alpha Blending for PLS, one with 2 
layers and one with 3 layers.  
 
They way these approaches work is that we accumulate the blended layers in the PLS, 
then resolve them to a single output color at the end. 
 
(The original paper used 4 layers, but we’re limited by the amount of pixel local 
storage on current implementations.) 
 
The one with 2 layers is partitioned with RGBA8 for color and 32-bit float for depth. 
 
The 3 layer version stores the 3 colors as RGBA8, while the depth values are stored as 
10-bit unsigned normalized values. This yields quite low precision for depth, but may 
be OK for some scenes. 
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Another OIT algorithm we implemented was based on keeping track of the min/max 
depth of the incoming fragments. The main motivation behind the idea was to 
allocate more PLS space for color fragments and leave a fixed portion for keeping 
track of min/max depth range. This works well in comparison to multi-layer alpha 
blending when we have a small amount of storage space for fragments, but since it 
only keeps track of the depth range it doesn’t scale as well as MLAB – especially when 
the fragments are far apart and highly out of order. 
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For each incoming fragment the adaptive range algorithm compares the fragment 
depth value to the current pixel depth range. 
 
If the fragment is in front of the range, the existing stack of fragments are pushed 
towards the end and the new fragment is inserted at the front. The fragment that 
exits the stack is blended with the last fragment. 
If the fragment is inside the range, it is blended with an existing fragment color 
depending on its position inside the range. 
If the fragment is behind the range it is simply blended with the last fragment on the 
stack. 
 
Depending on where the fragment hits the range, it is either used as destination or 
source of the blend function. 
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For adaptive range the PLS is partitioned with a stack of 3 RGBA8 color values and 2 
FP16 values for keeping track of the depth range. 
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To compare the OIT approximations we implemented a reference OIT implementation 
using depth peeling. We can use PLS for this by keeping track of previous and current 
minimum depth together with their corresponding color values. It requires that we 
draw the object multiple times until all layers have been rendered, so it might not be 
usable for real-time applications. 
 
Fixed function alpha blending is used to compare typical image quality. 
 
Note: all the reference images are rendered using depth peeling with 20 layers, so in 
order to match the reference quality we would need to be able to store at least that 
many layers in PLS. 
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Here’s our reference frame. 
Note that we’re not using the typical particle cloud test-scene here. Our test scene 
will make errors more apparent. 
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Alpha blending obviously doesn’t get it right. 
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Even 2 layers is much better, but we observe an obvious artifact on the lower left 
sphere. 
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No obvious depth artifacts here, but colors aren’t quite right. 
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3 layers gets us closer, but some depth artifacts on the middle sphere 
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We measured the performance of the different OIT implementations running 3 
different scenes. 
 
The synthetic test shades is an extreme test that shades a total of 46.4M fragments. 
Dragon far is our deferred shading implementation chained with OIT – with the 
transparent geometry at some distance. 
Dragon near is the same scene but with the transparent geometry covering more of 
the screen. 
 

32 



Performance comparison between the different implementations running different 
content. The performance numbers have been normalized in comparison to alpha 
blended rendering. These results are from a Note 10.1 device running a Mali-
T628MP6 GPU. 
 
As you can see the MLAB algorithms scale down in performance when increasing the 
number of layers – this is expected. The adaptive range algorithm achieves the 
highest performance, while quality-wise it’s somewhere between MLAB2 and MLAB3. 
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PLS allows us to chain techniques together. This makes combining techniques such as 
deferred shading and order-independent transparency very easy. 
 
In the above schematics we have a regular deferred shading opaque phase which fills 
up the PLS G-buffer, accumulate lights and resolve. After this is done we render all 
transparent geometry using OIT. For this we repartition the layout of the PLS 
according to the different OIT algorithm we tested. 
 
This is what makes PLS unique - the ability to chain complex techniques together 
without hitting external memory. We achieve this by repartitioning the TLS. All 
processing – up to the final color resolve - is completely independent of the output 
framebuffer format. 
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Deferred Shading with reference OIT 
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Deferred shading with regular alpha blending 
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Deferred shading with approximated OIT using the adaptive range algorithm 
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Deferred shading with Multi-Layer alpha blending 
 
This gives visually good results – fairly close to the reference. 
 
Note that with TLS this and the preceding adaptive range example can both be 
rendered in a single pass. 
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Deferred Shading with reference OIT 
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With more TLS we could have gone beyond 3 layers of MLAB. So lets examine that controls 
the amount of data available per-pixel. 
 
The amount of per-pixel TLS available on the GPU we tested with is 128-bits/pixel - the 
minimum required by both FBF and PLS - which at a tile size of 16x16 is 4k of TLS in total. The 
PLS extension allows the exact amount to be specified by the implementation and is reported 
to the application by querying MAX_SHADER_PIXEL_LOCAL_STORAGE_FAST_SIZE_EXT. It 
would therefore be very simple to add additional TLS and access it through the existing PLS 
extension. In comparison exposing additional memory through the FBF extension would 
require an updated extension as it would require > 4 simultaneous MRTs, which impacts the 
C API and requires more changes from the application.  
 
Another way to provide additional TLS memory per-pixel would be to change the tile size 
used during rendering. This would not require additional GPU memory, is already possible in 
some architectures and is supported by the existing PLS extension while FBF would require 
extending for the same reasons described above. The same number of fragment threads 
would execute as before but with higher per-tile overheads. (Or conversely for smaller PLS 
footprints we can employ larger tile sizes.) 
 
In both scenarios we see advantages in decoupling the amount of TLS available per-pixel from 
the framebuffer configuration.  
 
In the PLS extension, we refer to TLS as ‘fast’ memory. Imagination Technologies 
recommended and we have adopted supporting ‘normal’ PLS variables in the extension. 
Normal PLS variables are likely to map to cached main memory in practice. They have the 
same lifetime and formats as their fast siblings and differ only in performance. In principle, a 
example use case of this would be full OIT where pixels that require more storage than TLS 
allows could spill to cache. Fully exploring the potential of ‘normal’ PLS variables is future 
work.  
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Let’s turn to MSAA.  
 
In order to implement 4xMSAA tile-based GPUs typically use 4x the non-MSAA 
storage to keep the per-sample results before blending them together when 
resolving. So when working with 4xMSAA on 4 MRTs you need the equivalent storage 
of 16 MRTs. If you want to use these extensions and get correct results you’d also 
require 4x the computation as doing so implies per-sample shading. AA is an essential 
component of modern graphics, but MSAA is only part of the AA picture and at these 
costs we would like to also considering whether a different geometry anti-aliasing 
strategy is required. 
 
As of today, PLS does not support MSAA and can only be enabled on non-MSAA 
framebuffers. We have examined some possible ways of incorporating it but have not 
yet settled on an approach. This is future work. 
 
FBF does the “correct” thing but we suspect 4x the shading cost is likely to be 
prohibitive in practice. 
 
ARM_shader_framebuffer_fetch does not support MRT but does present a 
possible alternative for MSAA handling. It approximates the true result by producing 
an approximate average (approximate in the sense that is does not always return the 
result true MSAA would do). It still requires 4x storage but does not need to run 
shading at sample rates. Whether this approximate approach is suitable for enough 
uses cases is the main question to answer. 
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We would like to ask, “do we really need MSAA?” 
 
Graphics certainly does need AA, but 4xMSAA only has a modest impact. In particular, it has 
no impact on aliasing related to shader output - something which is especially visible in 
physically-based shading where smaller highlights are more common. It is also likely to be 
unaffordable at higher rates. 
 
Techniques such as FXAA have shown that it’s quite possible to address some aliasing 
problem entirely in image space (contrary to everything you may have learned from signal 
processing lessons!). But these techniques also require large amounts of memory bandwidth 
especially at higher resolutions. An advantage of the existing MSAA implementation on Mali 
GPUs is that it doesn’t incur any extra memory bandwidth. 
 
One option could be to ignore MSAA altogether when using PLS. This would allow PLS to be 
compatible with MSAA buffers but all shading would occur per-fragment. 
 
We could also allow per-sample shading, but with the costs outlined earlier.  
 
We could allow applications to specify MSAA per PLS variable using additional qualifiers. This 
would allow much finer grained control. Particularly for PLS where the view can be changed 
per-shader and not everything you are likely to store in TLS would want MSAA (e.g. an array 
of indices such as we employed in the lightstack renderer). This  appears to be a better fit for 
PLS but it does introduce a considerable amount of extra complexity.  
 
Supporting more than one of these options is also a possibility. 
 

44 



MSAA is an “all or nothing” approach. You either do it globally or not at all. As MSAA 
only affects the results of a minority of pixels there’s clearly room for improvement 
by performing work only where it’s required. 
 
Tiago Souza from Crytech described a related technique in: 
http://www.crytek.com/download/Sousa_Graphics_Gems_CryENGINE3.pdf  
In brief, they create a custom per-sample mask which they write to the stencil buffer. 
This mask is then used to select whether a shader should be run per-pixel or per-
sample. It’s possible to imagine that a similar approach could reduce the computation 
in our setting. 
 
Another promising option is Coarse Pixel Shading. This introduces a logical extra 
shading stage for coarse pixels, and makes decisions on a per-tile basis as to what 
resolution coarse pixel shading operates at. There are many other works on multi-rate 
shading. We may find that combining PLS with some form of multi-rate shading 
provides a better long term solution, but this is future work. 
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In summary, we have seen how existing technology and extensions can be used to 
implement deferred shading, approximate OIT, as well as combining them into a 
single pass in a very bandwidth efficient manner. 
 
In the future: 
 - We would like to explore the convergence of PLS/MSAA/Coarse. The idea being that 
work can be done at a variable rate. 
 - We’d obviously like to see these technologies be widely adopted, whether that’s in 
the current form or a different variation. 
 - All TLS-related extensions assume a well defined framebuffer lifetime. In Metal this 
is explicit but in the current OpenGL/ES standards this is implicit. We would very 
much like to see explicit lifetimes in graphics APIs. 
 - A generalization of the PLS ideas to GPU compute, by which we mean “fragment 
shader compute”, in contrast to say, OpenCL with local memory. We’d want compute 
shaders create the input data for the compute state using the rasterizer. 
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Thanks! If you have any questions or feedback please do get in contact. 
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We also looked into using PLS to store physical texture coordinates. This way we can 
defer most texture lookups until a resolve phase. Note that we still had to lookup into 
the pagetable and convert virtual to physical coordinate conversion. 
 
The idea behind this was to only do texture lookups on fragments that that contribute 
to the output. Our experiments, however, showed that we didn’t get any 
performance benefits from this – the performance was mostly the same. This can 
largely be attributed to Forward Pixel Kill, a HW feature in the Mali-T62x series of 
GPUs which rejects fragments early if the GPU finds that they are covered by a 
different opaque fragment.  
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