BLE 简介(利用) **ARM**[®]mbed[®]

简介

本研讨会旨在利用 ARM® mbed[™] 工具帮助大家熟悉 BLE (低功耗蓝牙)。如果您还不是很熟悉这些工具,请查看 mbed 入门文档。

在本研讨会中,我们将从产品开发的角度来了解 BLE。为此,我们将论述现有标准、BLE 工作原理 以及最大程度利用 BLE 系统的方式。因此,我们将略过许多低级别接口,这些接口只会由协议栈 开发者看到,并且与应用层设计无关。相反地,我们将关注经过 GATT/GAP 和 SIG 许可的配置文 件和服务。

参加本课程的前提条件是具备一台支持 BLE 的智能手机和一个支持 mbed 的 BLE 开发平台。

最好以数字文档的形式查看本文档。此处为本文档的永久链接,方便您离线查看: <u>http://goo.gl/VR2rki</u>

目录: 简介 什么是 BLE? **BLE** 堆栈 GAP 通用访问配置文件 GATT 通用属性配置文件 BLE 状态: 广播与连接 物理层 BLE 数据包布局 GAP: 广播有效负载 PDU GATT: 配置文件、服务和 特性 UUID 的 开发和测试 **BLE** 应用 示例 GAP: URIBeacon GATT: 心率配置文件 Evothings 示例: BLE Discovery 向前迈进 其他工具

什么是 BLE?

低功耗蓝牙(亦称 BLE 或 Bluetooth Smart)是 Bluetooth v4.x 规格的一部分。BLE 不兼容传统蓝 牙。它是一种低功耗、短距离的通信协议,是移动和嵌入式设备的理想之选。拥有不常用的较小数 据包且最大比特率大约为 30KB/s 便可实现低功耗方面的特性。因此,不建议将 BLE 用于视频或音频流处理等高吞吐量应用。BLE 应用在纽扣电池上运行长达 1 年以上的现象很常见。

BLE 协议栈

BLE 堆栈拥有多个层。但是,在本教程中,我们将仅论述最顶端的层: GATT 和 GAP。只有当您 是堆栈开发者时,才需详细了解上述层下的其他层。如果是这种情况,我建议您阅读核心蓝牙规 格。

GAP:通用访问配置文件 GAP 层负责执行多个控制功能。诸如安全性、连接管理和广播等功能均属 GAP 层的一部分。

GATT:通用属性配置文件 GATT 层负责执行数据交换和数据组织。GATT 层使用 属性协议 (ATT) 作为在各设备间交换数据的通道。

BLE 状态: 广播广播与连接

BLE 在两种基本状态下运行:广播和连接。如果您查看 BLE 规格,实际上会发现每个用例(广播 程序、启动程序、传播程序等)都有多个带有特殊名称的子模式,但是所有用例总体上可划分为上 述两种状态。

在广播模式下,广播程序向正在侦听的任意扫描程序广播数据,有时有连接意向,而有时并没有建 立连接的意向。它只是单纯地向任何要查找数据的用户广播,而不能保证数据正在传输。这就是一 对多传输。广播模式使用 BLE 堆栈的 GAP 层。

在连接模式下,两台 BLE 设备会直接互连。在该连接状态下,服务器向客户端提供数据。术语"客 户端"和"服务器"用于表示定向数据流,正因如此,这两台设备在双向信息流过程中将作为客户端和 服务器。在连接状态的信息传输过程中,可以保证数据将被发送并通过校验和进行验证。这就是一 对一传输。连接模式使用 BLE 堆栈的 GATT 层。

物理层

BLE 无线电使用 2.4 GHz 频带并且在频谱范围内将其划分为 40 个信道 (2.4000-2.4835 GHz),包含 37 个数据传输通道和 3 个广播通道。正如下图所示,三个橙色通道用于进行广播,而蓝色通道则用于数据传输。

图 3: 频率层<u>来源</u>

BLE 使用跳频方案,其中无线电将定期按照指定的通道数跳跃,从而避免附近无线电之间出现冲突。这将支持 BLE 在群集的 2.4Ghz 频带下有效地广播数据。

BLE 数据包布局

所有 BLE 数据包至多为 47 个字节。但是,这稍具欺骗性,因为在每次传输过程中,并不存在 47 个字节的用户可访问信息。相反,每个 BLE 堆栈层均会对这 47 个字节进行削减,并且通常情况下 最终仅会为用户提供 20 个字节的可用信息。完整的 47B 布局如下所示。

PDU 节细分为两个字节标题和类型特定的有效负载。一些可用的有效负载类型如下所示:

广播广播通道 PDU (CH 37,38,39):

- 广播广播广播数据包 (GAP)
- 扫描程序请求/响应有效负载
- 连接启动有效负载

数据通道 PDU (CH 0-36):

- 链路层控制有效负载
- 数据有效负载
 - L2CAP 信号通道
 - 安全管理器协议
 - 属性协议 (GATT)

GAP: 广播广播有效负载 PDU

广播广播有效负载用于广播 BLE 设备的相关信息。让我们深入了解下用于"广播广播有效负载"类型 的 PDU。

39 个字节的广播有效负载 PDU 将缩减至 **31B** 的广播数据节。这一 **31B** 节包含多个广播结构,每 个结构传输一个特定信息块。只要所有结构的总大小不超过 **31B**,便可以存在任意数量的 AD 结构。值得注意的是,每个 AD 结构拥有与其相关的 2B 开销。

有关可以放入"AD 类型"字段的内容的完整列表,请参阅 <u>SIG GAP 页面</u>。从技术层面来讲, AD 类型的长度为 N;但实际上,它的长度始终为 1B。以下简要列举了最常用的 AD 类型。

广播有效负载 AD 类型:

- 0xFF 制造商特定数据
- 0x01 关于可连接性的标记
- 0x08 缩短的本地名称
- **0x0A** 发射功率电平
- <u>等等...</u>

几乎每个广播数据包都有 3 个字节被标记结构所占用,详细说明广播的广播模式。这就为带有 2B 开销的 26B 用户数据留下了余地。此空间的常见用途为,将自定义数据格式转换为"制造商特定数 据"字段。这一用途见诸 <u>iBeacon</u> 和 <u>AltBeacon</u> 等技术中。 请记住,在"广播数据"节中传输数据并不保证送达;缺少 10-30% 的数据包并不少见。对于温度等数据而言,这并不是问题;但是对于加速计等实时数据而言,这会成为一个问题。

GATT: 配置文件、服务和特性

GATT 层负责传输数据。还存在数据有效负载 PDU,但是我们不会对其进行深入研究,因为 GATT 的实际数据大小对于开发者而言并不重要。这是因为 GATT 层中的数据是按要求发送,而非一次性 全部发送。这意味着只需发送请求的数据,其他数据则无需发送。

GATT 层将数据组织到一个服务和特性层级结构中。

服务拥有一个或多个特性。特性拥有一个小于 512B 的值,并且可以拥有 0 个或多个描述符。特性 还拥有一个标题,用于定义特性值的读取/写入/通知。

理论上而言,描述符对于发现特性表示的内容十分有用,但是实际上,它们很少使用并且通常会被 完全忽略。更为常见是的,用户定义自定义有效负载信息,并且只会发布其规格,而不会尝试使用 描述符进行描述。对于已明确界定的服务(如心率监护仪),特性值已被广泛熟知,并且不包含描 述符。

每个服务和特性均拥有 UUID (有关详情,请参阅下一部分)。

配置文件是另一层的抽象化。它们不是 GATT 技术规格的一部分,但是对于概念组织十分有用。

配置文件是一组服务,正如服务是一组特性一样。SIG 也会提供明确界定的配置文件。

其中一个很好的示例为心率监护仪配置文件。心率监护仪配置文件的结构如下:

- S1: 心率服务
 - c1: 心率测量
 - c2: 传感器位置
- S2: 设备信息服务
 - c1:制造商名称
 - c2: 型号
 - c3: 修订号 c(n): 等

UUID

UUID 代表通用唯一标识。在 BLE 中,一切都有 UUID。有两种大小的 UUID:2B/16 位(适用于 向 SIG 付款的用户)和 16B/128 位(适用于自行提供的用户)。2B/16 位 UUID 实际上只是一个骗 局;前两个字节用于服务/特性,而剩余的 14 个字节对于每个 SIG UUID 都相同的,因此可以隐含 填充。

每个服务、特性和描述符均拥有一个 UUID。但是配置文件没有。UUID 用于描述 BLE 事务中的一切,因为对它们进行压缩的效率远高于对英文描述进行压缩的效率。这使 BLE 调试看起来像是个巨大的 UUID 查找游戏。在大多数服务中,至少有一个特性将是可选的,这意味着它可以包括在内,也可以不包括在内。这会导致无法使用特性索引来解读其含义,因此改用 UUID 来定义具体的特性。

有关 UUID 的完整列表,请参见 GATT 规格选项卡,网址为 developer.bluetooth.org:___

- <u>服务</u>
- <u>特性</u>
- <u>描述符</u>

开发和测试

要开发和测试 BLE 应用,您将需要两件事物:客户端和服务器。我们应用中内置的服务器为 Nordic Semiconductor 的 <u>nRF51822 mkit</u>,但是任何<u>内置有 BLE 的支持 mbed 的平台</u>也将适用。 对于客户端而言,您需要一台内置有 BLE 应用且支持 BLE 的智能手机。

我们将继续关注心率配置文件,因为它相对而言比较简单且受到广泛支持。

BLE 应用

由于 BLE 拥有标准服务和特性,因此任意符合标准的 BLE 应用均可以用于与基于标准的设备进行 通信。快速搜索应用商店应该就能找到大量适合的应用。一些尤为知名的应用为 nRF Master Control Panel、nRF Toolbox for Android 和 LightBlue for iOS,后者还拥有一个能够在 OSX 上运 行的配套应用。

nRF Master Control Panel 可以很好地显示您周围的所有 BLE 设备,并且能够按信号强度进行组织。

LightBlue 带有一个简单易用的界面,以及一个很好的"UUID-至-英文"转换器。

示例

我们将介绍两个示例,一个用于 GAP,一个用于 GATT。请确保您已将内置有 BLE 且支持 mbed 的平台添加至编译器。如果您忘记了如何执行此操作,请参阅之前的文档 mbed 入门。

GAP: URIBeacon

让我们先查看下 <u>URIBeacons</u>,它属于<u>物理 Web</u>项目的一部分。URIBeacons 使用 BLE 广播重新 定向至网站或其他 URI 的短 URL。从最基本的形式来看,您可以将其视为基于 BLE 的 QR 代码。 URIBeacons 使用 GAP 广播数据包来广播 URL。

方法为:

- 1. 下载适用于 <u>iOS</u> 或 <u>Android</u> 的物理 Web 应用。
- 2. 将 mbed <u>URIBeacon 程序</u>导入您的编译器。
- 3. 编译该程序,然后将其加载至开发板。

4. 打开物理 Web 应用后,您应当看到针对"<u>http://www.mbed.org</u>"的 URIBeacon。物理 Web 应用还将从互联网上抓取大量关于该 URL 的信息。

现在,尝试更改 URI。请记住,URI 的最大长度为 17 个字节。编译代码,然后将其加载至开发 板。完成编程后,务必按下"重置"。使用物理 Web 应用来查看您的信标。

扫描 URIBeacons 的物理 Web 应用 显示信标的物理 Web 应用

URIBeacon 是广播数据包 PDU 的特殊用途。具体而言,它使用广播数据字段的制造商特定数据字段。URIBeacon 的规格如下所示。

请注意 ADLenth 和 ADType 字段占用的前两个字节,正如任何其他广播数据字段一样,您实际上 只有初始 31 个字节中的 26 个可以使用。URIBeacon 规格随后将 26 个字节中的 8 个字节用于开 销,从而将 17 个字节的空间留给 URI。如果您查阅<u>规格</u>,您将发现前缀('www.'、'http://')和后缀 ('.com/'、'.org/')均已减至一个字节,每个字节均是规格开销的一部分。

GATT: 心率配置文件

为演示 GATT 连接,我们将使用 mbed <u>BLE_HeartRate</u> 示例。

- 1. 请将该示例添加至编译器并对其进行编译,确保程序不含任何错误。
- 2. 更改设备名称,以便能够轻松识别。

将下列行更改为您能够轻松识别的内容:

- 3. 打开您选择的 BLE 扫描仪应用, 然后连接至您的设备。
- 提示: 建议使用 nRF Toolbox 应用,但是所有符合标准的 BLE 应用应该都可行。

请注意, iOS 会本地缓存名称,因此如果您事先已连接至 BLE 设备,则可能会缓存旧名称并且您将不会看到新名称。

连接成功后,您应当能够查看心率服务的心率测量特性。值会呈上升趋势(从 100 上升至 175), 然后重置。

尝试修改 mbed 代码,使其能够以 5 的倍数而非 1 的倍数增长。

Evothings

Evothings 是一个开源项目,可以为 Cordova 智能手机平台提供 BLE 插件。它支持您使用标准 BLE API 在 JavaScript 中创建与硬件无关的应用。这意味着,您可以在 Evothings 中写入应用,然 后在 iOS 或 Android 上运行,并且只会在平台切换时产生少量开销或者不产生开销。

Evothings 拥有可以在 OSX、Windows 和 Linux 上运行的方便的可执行程序,适用于快速进行原型 设计和开发。

- 1. 从相应网站上下载 Evothings Studio Workbench。
- 2. 从应用商店(<u>iOS</u>和 <u>Android</u>)下载 Evothings Client 应用。
- 3. 将软件包解压缩至您偏好的文件夹中,然后启动 Evothings Workbench。

图 6: 桌面上的 Evothings Workbench

4. 打开手机上的客户端应用,它将自动开始扫描已打开 Workbench 的计算机。

5. 当客户端识别工作站后,它将连接至该工作站。

6. 现在,您可以单击应用列表旁的运行按钮,在 Workbench 上运行任何应用。

7. 您还可以利用现有项目,然后对其进行修改。所有内容均出现在示例文件夹中。该应用只是适用于代码的 JavaScript 文件和适用于 GUI 的 index.html 文件。

示例: BLE Discovery

BLE Discovery 程序是一款很好入门的应用。它提供连接至任何附近 BLE 设备并探索其服务和特性的选项。您可以使用此应用连接至您的设备,然后仔细查看它显示的 UUID 是否符合您的预期。

例如,**0x1800**是指通用访问服务,而**0x180F**则是指电池服务。如果您感兴趣,可以在<u>此处</u>找到 完整的服务列表。

如果您对创建自定义 UUID 感兴趣,则可以在<u>此处</u>找到最佳实践。

图 7: 智能手机上的 BLE Discovery 应用

向前迈进

希望您目前对于如何构建 BLE 堆栈块有了一个更好的了解。如果您希望在 mbed 上探索更多示例 程序,则可以在<u>此处</u>找到所有官方示例。下载一些示例,然后逐个尝试,看看您是否已了解代码的 含义,然后试着单独行动。记住 - 如果您有任何问题,您始终可以在<u>问题论坛</u>上发布以联系我们的 mbed/BLE 专家。祝您编码顺利!

其他工具

其他平台也会提供大量用于 BLE 开发的工具。以下简要列举了一些目前出现的最佳工具。

智能设备

- 软件: nRF Master Control Panel、nRF ToolBox 和 BLE Explorer 等。
- 硬件: 内置。

OSX

- 软件: lightBlue 不错的可视化工具,但是它使用 UUID,而非人类可读名称 拥有适用于 iOS 的对等软件。XCode 拥有一些不错的插件。
- 硬件: USB 适配器或内置。

Windows

- 软件: Wireshark 或 TI 的工具集(需要 CC215x BLE 适配器)。上述两种选项均非常耗费资源。Windows 没有本地 BLE API。
- 硬件: USB 适配器或内置。

Linux

- 软件: BlueZ hciconfig 和 gatttool。全是命令行,并不十分适合初学者,但是它很有用并且能够轻松进行脚本制作/扩展。此处是一个<u>不错的教程</u>。
- 硬件: USB 适配器或内置。

其他

Python 资料库提供大量 BLE 串口设备。它们可以插入计算机,并且能够通过命令行进行控制。

- BlueGiga
- LightBlue Bean
- iteadStudio