
1 Introduction
Electromagnetic Compatibility (EMC) design consideration is
one of the critical factors to ensure a system is robust in
design, able to operate flawlessly in harsh environments, and
does not cause interference. This application note provides
design tips on how to use Kinetis E series MCU in
applications with EMC requirements.

Different techniques in hardware design, printed circuit board
(PCB) layout, and software setting are illustrated here to help
customers to apply EMC enhancements on their products at
the beginning of the design phase. In general, EMC issues in
final stages are more complicated, expensive, and time
consuming to fix. There are many constraints on circuit and
PCB layout modifications:

• When all component or module placements are fixed
inside the system.

• Higher cost structure due to additional components used
for those corrective actions.

• Solutions may invoke major design changes on
mechanical aspects, which impacts project schedule.

2 System overview
A typical application using a Kinetis E series MCU is used as
an example to demonstrate EMC design tips in practical use.

Freescale Semiconductor Document Number:AN4779

Application Note Rev 0, August 1, 2013

EMC Design Tips for Kinetis E
Family
by: Dennis Lui and T.C. Lun

© 2013 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

2 System overview...1

3 EMC design tips..2

4 Hardware design..3

5 Software design...7

6 Conclusion...17

7 References...17

The application note AN4476: EMC Design Considerations for MC9S08PT60, available on freescale.com, provides detailed
descriptions on basic EMC concepts and theory, which can help application developers understand the reason behind each of
the EMC design tips. Read this application note along with other Kinetis E family documentation such as Kinetis E
Reference Manual and Kinetis E Sub-Family Data Sheet, available on freescale.com, to understand the details of device
characteristics, register configurations, and firmware coding. The example code snippets are written with IAR Embedded
Workbench 6.40.

This is a typical application block diagram.

Output controls
Kinetis E

MCU

Sensors

Push buttons

RTS switchSWD

Serial Bus

Communication

Protection

Potentiometer

OSC

Power supply
AC input

7-Segment LED

optional

Figure 1. Typical application block diagram

The AC power line voltage is converted down and regulated to 5 V in the power supply block. The main supply for the whole
system, including MCU, GPIO, display, and analog peripherals, is 5 V. In some applications, 12 V supply option is also
required for high-power control circuits. For example, most power relay switches are controlled by 12 V driving circuits, but
the high current stages are drawn from the AC power line input directly.

The Kinetis E MCU is used for all signal detections on user input interface from traditional pushbuttons, communications to
host controller through standard UART serial port, system monitoring from sensor devices on IIC bus or direct voltage input
at ADC pins, power controls using GPIO pins with specific sequential order for system protection purpose, and hardware
fault detection at analog comparator inputs.

3 EMC design tips
The EMC design tips are discussed in the following sections, separate from hardware and software points of view. Hardware
or software engineers can select the section according to their requirements and apply the tips directly into their design.

EMC design tips

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

2 Freescale Semiconductor, Inc.

The hardware design tips cover board level considerations, which include design techniques on PCB layout and precautions
for different type of I/O ports. The primary objective is to make use of EMC knowledge to prevent any internal or external
noises that affect the system operation and stability; minimize the coupling effectiveness from the noise source to the victim
(for example, the MCU), reduce the noise magnitude from the interfering source, and increase the noise immunity of the
receptor.

A defensive software design concept is another way to address the EMC issues caused by improper software handling on
false triggered events in a noisy environment. The software must be able to identify if a particular event is a false alarm
triggered by noise sources, or a normal driven event. It must then make a smart decision on corresponding actions. For
example, the MCU must not start a high-power control stage if there is any uncertainty on the requested action.

4 Hardware design
The hardware considerations for MCU application in noisy environment consist of PCB layout design and external
component connections for peripheral interfaces.

At the board level, the PCB layout is the key factor for noise coupling from internal or external noise sources. The traces on
the layout act as coupling paths, and the geometry factors of the traces (length, width, shape, and position) affect the coupling
effectiveness significantly. A proper board and cable placement in the system can help to isolate noise sources from the
system and increase the system immunity level. The following subsections describe techniques recommended for a robust
hardware design.

4.1 Single-layer PCB
High cost multi-layer PCB design provides more flexibility on component placement, signal trace routing, power supply
decoupling, and reference grounding.

However, the size and shape of the PCB are limited by the mechanical form factor, which is the key obstacle for PCB design
in most cases. For cost consideration, a single-layer with double-side loading PCB is a good choice for most home appliance
applications, but it is more challenging to design this kind of PCB with a high pin-count device. The following sections show
you how to implement the PCB layout with good EMC practices.

4.2 Placement methods
Component placement must satisfy the list of mechanical constraints for the product.

The general guidelines for reference are as follows:
• Mark all positions for screw holes and mounting points as keep-out area.
• Place all user interface components with fixed position requirement. For example: display panel, control buttons, and

connectors.
• Separate high-power circuitry from low-power and noise sensitive circuitry.
• Place associated components into small groups, and try to align the groups in a logic order which matches with the

corresponding signal flow.
• Identify all critical components that need to be placed near the MCU; external components connected from MCU input

ports to power or ground. For example: supply decoupling capacitors and filter components for input signals.
• Minimize the area formed by the power loops and ground loops.
• Reduce the common mode impedance from power and ground to the MCU.

It may require considerable effort to finalize an acceptable version which is able to fulfill all the constraints.

Hardware design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

Freescale Semiconductor, Inc. 3

4.3 Power supply and ground routing
The PCB layout for power supply and ground plane are extremely important for EMC performance in board-level, especially
in multi-supply system with 5 V and 12 V.

PCB layout technique is used to separate the ground plane into two portions as shown in this figure. One is defined as the
return path for 12 V circuits, and the other is the 5 V return path for MCU and other critical components. The noise from the
12 V ground will not be coupled with the 5 V ground through the ground traces.

Fill up a ground plane underneath
the MCU and connect all VSS pins
together with the same potential level

Minimize the ground loops by use

of the corner points for peripheral
components around the MCU

5V GND

Power supply GND

12V GND

Avoid the ESD discharge energy

injects into the 5V GND directly

Figure 2. Power supply and ground routing

In some application cases, the 12 V ground is intentionally used as the return path for components operated in 5 V supply rail
and subject to ESD damage in air-discharge test. Connecting the 12 V ground to those 5 V components prevents the ESD
discharge energy couples into the 5 V ground directly. The MCU may be forced to reset, halt, or even damage if high energy
passes the MCU ground.

The MCU ground connection method in PCB layout is an essential factor of the EMC performance. It fills up a ground plane
underneath the MCU and connects all VSS pins together, which is a good practice for EMC consideration. This method
ensures all MCU VSS pins are kept at the same potential level, and also minimizes the inductance on current return path from
MCU to bypass capacitors for high-frequency noise. For the LQFP package, the MCU ground plane can be further extended
to the package corner points to achieve short ground paths with minimum loop area for other peripheral components around
the MCU.

Hardware design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

4 Freescale Semiconductor, Inc.

4.4 Decoupling and bypassing
It is necessary to have better understanding on the concepts of decoupling and bypassing to avoid any incorrect
implementation for EMC issue:

• Decoupling is used to isolate noise between circuits on its common line. The power trace is one of the common lines
from a voltage regulator to the MCU.

• Bypassing is used to reduce the high-frequency current flows in an impedance path by shunting that path with a bypass
capacitor.

The effectiveness of adding decoupling and bypass capacitors for the MCU are very dependent on joining position and
sequence as shown this figure. The guidelines of PCB layout on MCU supply pins (VDD and VSS) are as follows:

• Connect the power and ground traces from the power source to the decoupling capacitors and then connect them to the
bypass capacitors before going to MCU’s VDD and VSS pins.

• Place the power and ground traces in parallel to minimize the loop area.
• Place the bypass capacitor to each VDD and VSS pair as close as possible.

12V decoupling capacitor

Power supply GND

5V decoupling capacitor

Connect VDD and VSS traces to
the decoupling capacitor first and
then to the bypass capacitor
before going to MCU's VDD and
VSS pins

Place bypass capacitors as close
as possible to the VDD and VSS
pairs

Figure 3. Decoupling and bypassing

4.5 Crystal oscillator circuit
The crystal oscillator components connected at MCU EXTAL and XTAL pins are very sensitive to external noise.

Hardware design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

Freescale Semiconductor, Inc. 5

The PCB routes ground traces in the form of a guard ring, along with the traces connecting to the EXTAL and XTAL pins
can minimize the noise coupling into the crystal circuit. An example is shown in this figure, and the general guidelines are as
follows:

• Do not place any signal trace (except the ground traces) near crystal circuit or across the bottom side of the circuit.
• Place the oscillator circuit components to the EXTAL and XTAL pins (crystal, feedback resistor, and loading

capacitors) as close as possible.
• Select the internal oscillator as clock source for better EMC performance.
• Connect the ground of loading capacitor to the ground plane directly when in double-layer or multilayer PCB.
• Select minimum bus frequency to fulfill system requirements.
• Apply minimum trace length to oscillator circuit.
• Use suitable value of feedback resistor and loading capacitors.

Add a guard ring (a ground
trace with no current flow)

Connect crystal loading
capacitors to a common
ground plane

Avoid any signal trace near
the oscillator circuit or
across the bottom side of
the circuit

Place the oscillator circuit to
the EXTAL and XTAL pins as
close as possible

Figure 4. Crystal oscillator circuit

4.6 Spacing and isolation
The isolation for different circuit blocks is important when an AC high-power circuit is involved side by side to a low-power
circuit on the same board as shown in this figure.

In some cases, you may need to add a physical slot for better isolation if the board size is limited. Similarly, apply enough
isolation space between the PCB trace and mounting screw holes or board edge for ESD consideration.

Hardware design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

6 Freescale Semiconductor, Inc.

AC input to power board

High voltage portions

DC output from power board

Figure 5. Spacing and isolation

4.7 Input and output port
The MCU I/O ports, configured as input function, are more sensitive to noise when compared to the output function.

In general, an RC filter is added for each input function pin to attenuate the noise injected into the pin from external noise
sources. The placement of the filter should be close to the pin. The value of the RC filter depends on the input signal and its
characteristics (digital or analog, and rate of change). The typical value of the series resistor is in the range of 100 Ω to 1 kΩ
while the value of filtering capacitor is in the range of 1000 pF to 0.1 μF.

The RESET_b and NMI_b are special pins in the Kinetis E MCU. Placement of decoupling capacitor for RESET_b pin and
the external pullup for both pins should be considered as power pin filtering. Minimizing the ground loop for the capacitor
and the VDD loop for the pullup resistor of these pins is recommended.

Do not connect unused I/O pins to anything. Make it floating, and then set it as output low in software. Periodically refresh
the state of the pin to avoid changes in state by noise. If floating pins are not allowed in a particular application, connect a 10
kΩ pulldown resistor for each unused pin. Do not connect any unused I/O pin to power or ground directly.

5 Software design
A good software design with EMC considerations improves overall system performance and operating stability in noisy
environments.

Software design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

Freescale Semiconductor, Inc. 7

In general, the software design cannot change the physical media which couples noise into the system, or reduce the absolute
magnitude of noise generated from external sources. However, the software provides an intelligent method to select
corrective actions in fault conditions and implement precautionary features for system protection. These software techniques
are recommended for a good defensive software design:

• Enable WatchDog function to avoid code runaway.
• Refresh data direction setting registers periodically.
• Fill unused memory to avoid code runaway.
• Define all interrupt vectors, even those that are not used.
• Select Frequency-Locked Loop (FLL) engaged mode.
• Always reconfirm edge triggered event.
• Enable digital filter on input port.

5.1 Enable WatchDog function
The WatchDog (WDOG) function forces a system reset when the application software fails to execute as expected.

For example, an active software routine jumps into an unexpected memory location or runs into an infinite loop when
transient noise is injected into the MCU. It is important to make sure that the system will not halt even the software loop is
out of control in harsh conditions. Holding the MCU in an uncontrollable state is very dangerous and unacceptable, especially
for high-power control applications with safety requirements. It is recommended to add the WDOG refresh routine in the
main loop instead of sub-routines and interrupt routines. The sample code is given here.

#define wdog_unlock() WDOG_CNT = 0x20C5; WDOG_CNT = 0x28D9
#define WDOG_CLK (WDOG_CLK_INTERNAL_1KHZ)

void wdog_enable(void)
{
/* First unlock the watchdog so that we can write to registers */
 wdog_unlock();

/* NOTE: the following write sequence must be completed within 128 buc clocks
 *
 */
/* enable watchdog */

#if (WDOG_CLK == WDOG_CLK_INTERNAL_32KHZ)
 WDOG_CS2 = 2; /* use internal reference clock (32K) as clock source */
#elif (WDOG_CLK == WDOG_CLK_INTERNAL_1KHZ)
 WDOG_CS2 = 1; /* use internal 1K clock as clock source */
#elif (WDOG_CLK == WDOG_CLK_EXTERNAL)
 WDOG_CS2 = 3; /* use external clock as clock source */
#elif (WDOG_CLK == WDOG_CLK_BUS)
 WDOG_CS2 = 0; /* use bus clock as clock source */
#else
#error "not supported WDOG clock source\n";
#endif
 WDOG_TOVALH = 0x03;
 WDOG_TOVALL = 0xE8; // ~1s

 WDOG_CS1 = 0x20
 | WDOG_CS1_EN_MASK
 //| WDOG_CS1_INT_MASK
 //| WDOG_CS1_STOP_MASK
 //| WDOG_CS1_WAIT_MASK
 //| WDOG_CS1_DBG_MASK // debug enable
 ;
}

void wdog_refresh(void){

 DisableInterrupts; // disable interrupts

Software design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

8 Freescale Semiconductor, Inc.

 WDOG_CNT = 0x02A6; //Refresh sequence of writing 0x02A6
 WDOG_CNT = 0x80B4; // and then 0x80B4 within 16 bus clocks

 EnableInterrupts; // enable interrupts

}

void main (void){

 wdog_enable(); // enable Watch-Dog function

 for(;;){

 wdog_refresh(); // Reset the Watch-Dog counter

 MicrowaveTask(); // Application main task

 }
}

5.2 Refresh data direction setting registers
The input or output direction state for each port pin should be recovered to the expected condition, if it has been changed by
any transient noise accidentally.

It is recommended to define a simple routine to refresh all data directions periodically. The refresh period depends on the
application requirement and timing pattern of the injected noise. For AC power application, the 50 Hz or 60 Hz periodic
signal captured from the AC power line through an optical coupling circuit can be used as a trigger signal. The sample code
is given here.

#define UnABase PortBaseABCD // PortBaseABCD
#define UnAPort PortA // Port
#define UnAPins 0x7C // Bit 6,5,4,3,2
#define UnAPullupBase PullupBaseABCD // Pullup Base Address

#define Unused_A_Dir_Out() GPIO_PDDR_REG(UnABase) |=
((uint32_t)UnAPins<<UnAPort)
#define Unused_A_Dir_In() GPIO_PDDR_REG(UnABase) &= ~((uint32_t)UnAPins<<UnAPort)
#define Unused_A_InDis() GPIO_PIDR_REG(UnABase) |= ((uint32_t)UnAPins<<UnAPort)

#define Unused_A_Toggle() GPIO_PTOR_REG(UnABase) |= ((uint32_t)UnAPins<<UnAPort)
#define Unused_A_High() GPIO_PSOR_REG(UnABase) |= ((uint32_t)UnAPins<<UnAPort)
#define Unused_A_Low() GPIO_PCOR_REG(UnABase) |= ((uint32_t)UnAPins<<UnAPort)
.
.
.

void StatusRegisterUpdate(void){
 if(mStatusRegisterUpdate_d == TRUE){

 Unused_A_InDis();
 Unused_A_Low();
 Unused_A_Dir_Out();

 Unused_B_InDis();
 Unused_B_Low();
 Unused_B_Dir_Out();

/* Port C is used as Input and Output port and refresh
by key scanning routine
*/
 //Unused_C_InDis();
 //Unused_C_Low();
 //Unused_C_Dir_Out();

Software design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

Freescale Semiconductor, Inc. 9

 Unused_D_InDis();
 Unused_D_Low();
 Unused_D_Dir_Out();

 Unused_E_InDis();
 Unused_E_Low();
 Unused_E_Dir_Out();

 Unused_F_InDis();
 Unused_F_Low();
 Unused_F_Dir_Out();

 Unused_G_InDis();
 Unused_G_Low();
 Unused_G_Dir_Out();

 Unused_H_InDis();
 Unused_H_Low();
 Unused_H_Dir_Out();

 mStatusRegisterUpdate_d = FALSE;
 }
}

5.3 Fill unused memory
Unused memory, flash memory or RAM should be filled with predefined content so that the MCU does not execute any
unexpected instruction when the normal execution flow is disturbed by external noise sources.

One option is to fill all unused memory with instruction which is not defined in ARM® Cortex®-M0+ core. Figure 6 shows
the opcode value of “1110” in conditional branch instruction is undefined, so it is recommended to fill all unused memory
with “0xDEDE”. The execution of an undefined instruction will force the processor to go through the fault routine for
appropriate action.

Thumb Instruction Set Encoding

Conditional branch, and supervisor call

Table A5-8 shows the allocation of encodings in this space.

Table A5-8 Branch and supervisor call instructions

Opcode Instruction See

Conditional branch

Permanently UNDEFINED

Supervisor call

B on page A6-40

SVC (formerly SW) on page A6-252

Figure 6. Undefined opcode

The unused memory locations can be filled in IAR Embedded Workbench IDE by following steps and the configuration is
shown in Figure 7 :

Software design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

10 Freescale Semiconductor, Inc.

• Access the project option menu by pressing hot key combination of [Alt + F7].
• Select Linker option in category and the tab of Checksum.
• Click the “Fill unused code memory” and fill in the value for Fill pattern, Start address and End address.

Linker options

Checksum

Fill unused code memory

Fill pattern

End address

Start address

Figure 7. IAR linker options

The sample code for hard fault interrupt service routine with system reset request is given here.

void hardfault_isr(void)
{
 uint32_t temp;

 temp = SCB_AIRCR;
 temp &= 0x0000FFFF;
 SCB_AIRCR = temp | 0x05FA0000 | SCB_AIRCR_SYSRESETREQ_MASK;

 return;
}

NOTE
For details, see ARM Cortex-M0+ Devices Generic User Guide, available on arm.com.

5.4 Define all interrupt vectors
Defining the interrupt vectors for each unused interrupt function allows the running software to jump into a predefined
interrupt routine when a particular unused interrupt flag is false-triggered by a noise source.

The MCU is able to resume the execution steps correctly after the interrupt function. The sample code is given here.

Software design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

Freescale Semiconductor, Inc. 11

/* Interrupt Vector Table Function Pointers */
typedef void pointer(void);

extern void __startup(void);
extern unsigned long __BOOT_STACK_ADDRESS[];
extern void __iar_program_start(void);
extern void SRTC_ISR(void);
extern unsigned long __initial_sp[];
extern void Reset_Handler(void);
#if (defined(__GNUC__))
extern unsigned long _estack;
extern void __thumb_startup(void);
#define VECTOR_000 (pointer*)&_estack // ARM core Initial
Supervisor SP
#define VECTOR_001 __thumb_startup // 0x0000_0004 1 - ARM core Initial
Program Counter
//#define VECTOR_001 __startup //__thumb_startup
 // 0x0000_0004 1 - ARM core Initial Program Counter

#elif (defined(KEIL))
#define VECTOR_000 (pointer*)__initial_sp // ARM core Initial
Supervisor SP
#define VECTOR_001 Reset_Handler // 0x0000_0004 1 - ARM core Initial
Program Counter
#else
 //
Address Vector IRQ Source module Source description

#define VECTOR_000 (pointer*)__BOOT_STACK_ADDRESS // ARM core Init
Supervisor SP
#define VECTOR_001 __startup // 0x0000_0004 1 - ARM core Init
Program Counter
#endif
#define VECTOR_002 default_isr // 0x0000_0008 2 - ARM core NMI
#define VECTOR_003 hardfault_isr // 0x0000_000C 3 - ARM core Hard
Fault
#define VECTOR_004 default_isr // 0x0000_0010 4 -
#define VECTOR_005 default_isr // 0x0000_0014 5 - ARM core Bus
Fault
#define VECTOR_006 default_isr // 0x0000_0018 6 - ARM core Usage
Fault
#define VECTOR_007 default_isr // 0x0000_001C 7 -
#define VECTOR_008 default_isr // 0x0000_0020 8 -
#define VECTOR_009 default_isr // 0x0000_0024 9 -
#define VECTOR_010 default_isr // 0x0000_0028 10 -
#define VECTOR_011 SVC_isr // 0x0000_002C 11 - ARM core SVCall
#define VECTOR_012 default_isr // 0x0000_0030 12 - ARM core Debug
Monitor
#define VECTOR_013 default_isr // 0x0000_0034 13 -
#define VECTOR_014 default_isr // 0x0000_0038 14 - ARM core
PendableSrvReq
#define VECTOR_015 default_isr // 0x0000_003C 15 - ARM core SysTick
#define VECTOR_016 default_isr // 0x0000_0040 16 0 Reserved DMA DMA 0
complete
#define VECTOR_017 default_isr // 0x0000_0044 17 1 Reserved DMA DMA 1
complete
#define VECTOR_018 default_isr // 0x0000_0048 18 2 Reserved DMA DMA 2
complete
#define VECTOR_019 default_isr // 0x0000_004C 19 3 Reserved DMA DMA 3
complete
#define VECTOR_020 default_isr // 0x0000_0050 20 4 Reserved MCM MCM
#define VECTOR_021 default_isr // 0x0000_0054 21 5 NVM FTMRH
flash memory
#define VECTOR_022 default_isr // 0x0000_0058 22 6 PMC LVD,LVW
interrupt
#define VECTOR_023 default_isr // 0x0000_005C 23 7 LLWU LLWU/IRQ
#define VECTOR_024 default_isr // 0x0000_0060 24 8 I2C0 I2C
#define VECTOR_025 default_isr // 0x0000_0064 25 9 - --
#define VECTOR_026 default_isr // 0x0000_0068 26 10 SPI0 SPI0
#define VECTOR_027 default_isr // 0x0000_006C 27 11 SPI1 SPI1

Software design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

12 Freescale Semiconductor, Inc.

#define VECTOR_028 default_isr // 0x0000_0070 28 12 SCI0 UART0
#define VECTOR_029 default_isr // 0x0000_0074 29 13 SCI1 UART1
#define VECTOR_030 default_isr // 0x0000_0078 30 14 SCI2 UART2
#define VECTOR_031 default_isr // 0x0000_007C 31 15 ADC0 ADC
complete
#define VECTOR_032 default_isr // 0x0000_0080 32 16 ACMP0 ACMP0
#define VECTOR_033 default_isr // 0x0000_0084 33 17 FTM0
FlexTimer0
#define VECTOR_034 default_isr // 0x0000_0088 34 18 FTM1
FlexTimer1
#define VECTOR_035 default_isr // 0x0000_008C 35 19 FTM2
FlexTimer2
#define VECTOR_036 default_isr // 0x0000_0090 36 20 RTC RTC
overflow
#define VECTOR_037 default_isr // 0x0000_0094 37 21 ACMP1 ACMP1
#define VECTOR_038 default_isr // 0x0000_0098 38 22 PIT_CH0 PIT_CH0
overflow
#define VECTOR_039 default_isr // 0x0000_009C 39 23 PIT_CH1 PIT_CH1
overflow
#define VECTOR_040 default_isr // 0x0000_00A0 40 24 KBI0
Keyboard0 interrupt
#define VECTOR_041 default_isr // 0x0000_00A4 41 25 KBI1
Keyboard1 interrupt
#define VECTOR_042 default_isr // 0x0000_00A8 42 26 Reserved ---
#define VECTOR_043 default_isr // 0x0000_00AC 43 27 ICS ICS
loss of lock
#define VECTOR_044 default_isr // 0x0000_00B0 44 28 WDOG
Watchdog timeout
#define VECTOR_045 default_isr // 0x0000_00B4 45 29 Reserved
#define VECTOR_046 default_isr // 0x0000_00B8 46 30 Reserved
#define VECTOR_047 default_isr // 0x0000_00BC 47 31 Reserved
// END of real vector table
/

***********************/
#define VECTOR_048 default_isr // 0x0000_00C0 48 32 Reserved
#define VECTOR_049 default_isr // 0x0000_00C4 49 33 Reserved
#define VECTOR_050 default_isr // 0x0000_00C8 50 34 Reserved
#define VECTOR_051 default_isr // 0x0000_00CC 51 35 Reserved
#define VECTOR_052 default_isr // 0x0000_00D0 52 36 Reserved
#define VECTOR_053 default_isr // 0x0000_00D4 53 37 Reserved
#define VECTOR_054 default_isr // 0x0000_00D8 54 38 Reserved
#define VECTOR_055 default_isr // 0x0000_00DC 55 39 Reserved
#define VECTOR_056 default_isr // 0x0000_00E0 56 40 Reserved
#define VECTOR_057 default_isr // 0x0000_00E4 57 41 Reserved
#define VECTOR_058 default_isr // 0x0000_00E8 58 42 Reserved
#define VECTOR_059 default_isr // 0x0000_00EC 59 43 Reserved
#define VECTOR_060 default_isr // 0x0000_00F0 60 44 Reserved
#define VECTOR_061 default_isr // 0x0000_00F4 61 45 Reserved
#define VECTOR_062 default_isr // 0x0000_00F8 62 46 Reserved
#define VECTOR_063 default_isr // 0x0000_00FC 63 47 Reserved
#define VECTOR_064 default_isr // 0x0000_0100 64 48 Reserved
#define VECTOR_065 default_isr // 0x0000_0104 65 49 Reserved
#define VECTOR_066 default_isr // 0x0000_0108 66 50 Reserved
#define VECTOR_067 default_isr // 0x0000_010C 67 51 Reserved
#define VECTOR_068 default_isr // 0x0000_0110 68 52 Reserved
#define VECTOR_069 default_isr // 0x0000_0114 69 53 Reserved
#define VECTOR_070 default_isr // 0x0000_0118 70 54 Reserved
#define VECTOR_071 default_isr // 0x0000_011C 71 55 Reserved
#define VECTOR_072 default_isr // 0x0000_0120 72 56 Reserved
#define VECTOR_073 default_isr // 0x0000_0124 73 57 Reserved
#define VECTOR_074 default_isr // 0x0000_0128 74 58 Reserved
#define VECTOR_075 default_isr // 0x0000_012C 75 59 Reserved
#define VECTOR_076 default_isr // 0x0000_0130 76 60 Reserved
#define VECTOR_077 default_isr // 0x0000_0134 77 61 Reserved
#define VECTOR_078 default_isr // 0x0000_0138 78 62 Reserved
#define VECTOR_079 default_isr // 0x0000_013C 79 63 Reserved
#define VECTOR_080 default_isr // 0x0000_0140 80 64 Reserved
#define VECTOR_081 default_isr // 0x0000_0144 81 65 Reserved
#define VECTOR_082 default_isr // 0x0000_0148 82 66 Reserved

Software design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

Freescale Semiconductor, Inc. 13

#define VECTOR_083 default_isr // 0x0000_014C 83 67
#define VECTOR_084 default_isr // 0x0000_0150 84 68
#define VECTOR_085 default_isr // 0x0000_0154 85 69
#define VECTOR_086 default_isr // 0x0000_0158 86 70
#define VECTOR_087 default_isr // 0x0000_015C 87 71
#define VECTOR_088 default_isr // 0x0000_0160 88 72
#define VECTOR_089 default_isr // 0x0000_0164 89 73
#define VECTOR_090 default_isr // 0x0000_0168 90 74
#define VECTOR_091 default_isr // 0x0000_016C 91 75
#define VECTOR_092 default_isr // 0x0000_0170 92 76
#define VECTOR_093 default_isr // 0x0000_0174 93 77
#define VECTOR_094 default_isr // 0x0000_0178 94 78
#define VECTOR_095 default_isr // 0x0000_017C 95 79
#define VECTOR_096 default_isr // 0x0000_0180 96 80
#define VECTOR_097 default_isr // 0x0000_0184 97 81
#define VECTOR_098 default_isr // 0x0000_0188 98 82
#define VECTOR_099 default_isr // 0x0000_018C 99 83

#ifdef USE_BOOTLOADER
#else
#define CONFIG_1 (pointer*)0xffffffff
#define CONFIG_2 (pointer*)0xffffffff
#define CONFIG_3 (pointer*)0xffffffff
#define CONFIG_4 (pointer*)0xfffeffff
#endif
#endif /*__VECTORS_H*/

5.5 Select FLL engaged mode
It is recommended to enable the FLL engaged mode with internal or external reference clock in the internal clock source
(ICS) module, which provides clock source option for the MCU.

The reference clock source first divides the lower frequency by reference divider and then multiplies the frequency up in FLL
module. The final core or bus clock is equal to FLL output frequency divided by the core or bus frequency divider.

The advantages of the frequency conversion in the ICS module are:
• The impact of transient noise glitch on high-frequency clock source (before the reference divider) is more significant

compared to a low-frequency clock source (after the reference divider) in terms of the glitch width against the clock
cycle.

• In general, the response of the FLL module is not fast enough to react to such kinds of short pulse noise due to the low-
pass filter characteristic.

The sample code is given here.

#define EXT_CLK_CRYST 4000 /* in KHz */
#define BUS_CLK_4MHz /* define bus frequency */

void FEI_to_FEE(void)
{
 /* assume external crystal is 8Mhz or 4MHz
 *
 */
 /* enable OSC with high gain, high range and select oscillator output as OSCOUT
 *
 */
 OSC_CR = OSC_CR_OSCEN_MASK
 | OSC_CR_OSCSTEN_MASK /* enable stop */
#if defined(CRYST_HIGH_GAIN)
 | OSC_CR_HGO_MASK /* Rs must be added and be large up to 200K */
#endif
#if (EXT_CLK_CRYST >=4000)
 | OSC_CR_RANGE_MASK
#endif
 | OSC_CR_OSCOS_MASK; /* for crystal only */

Software design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

14 Freescale Semiconductor, Inc.

#if defined(IAR)
 asm(
 "nop \n"
 "nop \n"
);
#elif defined(__MWERKS__)
 asm{
 nop
 nop
};
#endif
 /* wait for OSC to be initialized
 *
 */
 while(!(OSC_CR & OSC_CR_OSCINIT_MASK));

 /* divide down external clock frequency to be within 31.25K to 39.0625K
 *
 */

 #if (EXT_CLK_CRYST == 8000) || (EXT_CLK_CRYST == 10000)
 /* 8MHz */
 ICS_C1 = ICS_C1 & ~(ICS_C1_RDIV_MASK) | ICS_C1_RDIV(3); /* 8000/256 = 31.25K */
 #elif (EXT_CLK_CRYST == 4000)
 /* 4MHz */
 ICS_C1 = ICS_C1 & ~(ICS_C1_RDIV_MASK) | ICS_C1_RDIV(2); /* 4000/128 = 31.25K
*/
 #elif (EXT_CLK_CRYST == 16000)
 /* 16MHz */
 ICS_C1 = ICS_C1 & ~(ICS_C1_RDIV_MASK) | ICS_C1_RDIV(4); /* 16000/512 = 31.25K */

 #elif (EXT_CLK_CRYST == 20000)
 /* 20MHz */
 ICS_C1 = ICS_C1 & ~(ICS_C1_RDIV_MASK) | ICS_C1_RDIV(4); /* 20000/512 = 39.0625K
*/

 #elif (EXT_CLK_CRYST == 32)
 ICS_C1 = ICS_C1 & ~(ICS_C1_RDIV_MASK);
 #else
 #error "Error: crystal value not supported!\n";
 #endif

 /* change FLL reference clock to external clock */
 ICS_C1 = ICS_C1 & ~ICS_C1_IREFS_MASK;

 /* wait for the reference clock to be changed to external */
#if defined(IAR)
 asm(
 "nop \n"
 "nop \n"
);
#elif defined(__MWERKS__)
 asm{
 nop
 nop
};
#endif
 while(ICS_S & ICS_S_IREFST_MASK);

 /* wait for FLL to lock */
 while(!(ICS_S & ICS_S_LOCK_MASK));

 /* now FLL output clock is 31.25K*512*2 = 32MHz
 *
 */
 if(((ICS_C2 & ICS_C2_BDIV_MASK)>>5) != 1)
 {

 ICS_C2 = (ICS_C2 & ~(ICS_C2_BDIV_MASK)) | ICS_C2_BDIV(1);

Software design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

Freescale Semiconductor, Inc. 15

 }

#if defined(BUS_CLK_4MHZ)

 ICS_C2 = (ICS_C2 & ~(ICS_C2_BDIV_MASK)) | ICS_C2_BDIV(3); // divided by 8

#elif defined(BUS_CLK_8MHZ)

 ICS_C2 = (ICS_C2 & ~(ICS_C2_BDIV_MASK)) | ICS_C2_BDIV(2); // divided by 4
#else
 ICS_C2 = (ICS_C2 & ~(ICS_C2_BDIV_MASK)) | ICS_C2_BDIV(1); // divided by 2
#endif

 /* now system/bus clock is the target frequency
 *
 */
 /* clear Loss of lock sticky bit */
 ICS_S |= ICS_S_LOLS_MASK;
}

5.6 Reconfirm edge triggered
Multiple reading on input data for each edge-triggered interrupt service is an important technique to confirm if the input
event is valid and driven by determined sources.

The timing slot between each successive reading inside the loop should be adjusted with some kind of irregular pattern, such
that an evenly distributed noise pattern will not be recognized as a valid event. A simple random delay function is inserted
between each reading so the overall repeat period is not consistent. The random delay variable can be equal to a free-running
counter value captured when there is an interrupt trigger even.

The sample code is given here.

/* Random Delay Loop */
uint8_t RandomDelay(void){

uint32_t random_32bit = RANDOM_COUNTER;

 mRandomDelayCount = TPMxCnVLvalue(random_32bit);
 mRandomDelayCount &= gRandomDelayCountMask_c;
 return mRandomDelayCount;
}

for (iKey = 0; iKey < KeyDebounce; iKey++){

// random delay
 uint8_t idelay;

 idelay = RandomDelay();

 while(idelay > 0){
 --idelay;
 delay_1ms();
 }

 KeyScanValue[iKey] = Sw2Pin_Read();

 if (iKey != 0){

 if ((KeyScanValue[iKey] == KeyScanValue[iKey - 1])&&(KeyScanValue[iKey]==0)){

 KeyDetected_d = TRUE;

 }else{

 KeyDetected_d = FALSE;

Software design

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

16 Freescale Semiconductor, Inc.

 }

 }else {
 KeyDetected_d = FALSE;
 }

}

5.7 Enable digital filter
The digital filter is a feature in Kinetis E MCU that provides a simple low-pass filter characteristic for each port pin that is
configured as a digital input.

The filter width in clock size is the same for all enabled digital filters within one port, and should be changed only when all
digital filters for that port are disabled. This configurable filter provides an adaptive way to handle different types of transient
noises with deterministic pulse width in nature, which are difficult to handle by traditional analog filters.

The sample code is given here.

#define PortFilterEnable

#ifdef PortFilterEnable
PORT_IOFLT = PORT_IOFLT_FLTDIV3(LPOCLK_2) // Set FLTDIV3 to LPOCLK divided by 2
 | PORT_IOFLT_FLTDIV2(BUSCLK_64) // Set FLTDIV2 to BUSCLK divided by
64
 | PORT_IOFLT_FLTDIV1(BUSCLK_8) // Set FLTDIV1 to BUSCLK divided by 8
 | PORT_IOFLT_FLTNMI(SEL_FLFDIV3) // Select FLTDIV3 for NMI
 | PORT_IOFLT_FLTKBI1(SEL_FLFDIV2) // Select FLTDIV2 for KBI1
 | PORT_IOFLT_FLTKBI0(SEL_FLFDIV2) // Select FLTDIV2 for KBI0
 | PORT_IOFLT_FLTRST(SEL_FLFDIV3) // Select FLTDIV3 for RST
 | PORT_IOFLT_FLTH(SEL_FLFDIV1) // Select FLTDIV1 for Port H
 | PORT_IOFLT_FLTG(SEL_FLFDIV1) // Select FLTDIV1 for Port G
 | PORT_IOFLT_FLTF(SEL_FLFDIV1) // Select FLTDIV1 for Port F
 | PORT_IOFLT_FLTE(SEL_FLFDIV1) // Select FLTDIV1 for Port E
 | PORT_IOFLT_FLTD(SEL_FLFDIV1) // Select FLTDIV1 for Port D
 | PORT_IOFLT_FLTC(SEL_FLFDIV1) // Select FLTDIV1 for Port C
 | PORT_IOFLT_FLTB(SEL_FLFDIV1) // Select FLTDIV1 for Port B
 | PORT_IOFLT_FLTA(SEL_FLFDIV1); // Select FLTDIV1 for Port A
#endif

6 Conclusion
EMC design tips are illustrated in this application note to help customers apply EMC considerations in the early design phase
using Kinetis E MCU.

Detailed descriptions on hardware and software techniques are listed as a quick reference for customer to adapt a Freescale
solution more effectively.

7 References
These documents are available on freescale.com.

1. AN4438: EMC Design Considerations for MC9S08PT60 by T.C. Lun., 2012.
2. AN4476: System Design Guideline for 5V 8-bit families in Home Appliance Applications, by T.C. Lun, Dennis Lui,

2012.
3. AN4463: How to Develop a Robust Software in Noise Environment, by Dennis Lui, T.C. Lun, 2012.

Conclusion

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

Freescale Semiconductor, Inc. 17

4. AN2321: Designing for Board Level Electromagnetic Compatibility, by T.C. Lun, 2002.
5. AN2764: Improving the Transient Immunity Performance of Microcontroller-Based Applications, by Ross Carlton,

Greg Racino, and John Suchyta, 2005.

References

EMC Design Tips for Kinetis E Family, Rev 0, August 1, 2013

18 Freescale Semiconductor, Inc.

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and
software implementers to use Freescale products. There are no express
or implied copyright licenses granted hereunder to design or fabricate
any integrated circuits based on the information in this document.
Freescale reserves the right to make changes without further notice to
any products herein.

Freescale makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages.
“Typical” parameters that may be provided in Freescale data sheets
and/or specifications can and do vary in different applications, and
actual performance may vary over time. All operating parameters,
including “typicals,” must be validated for each customer application by
customer's technical experts. Freescale does not convey any license
under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found
at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or
service names are the property of their respective owners.

© 2008–2009, 2013 Freescale Semiconductor, Inc.

Document Number AN4779
Revision 0, August 1, 2013

http://freescale.com
http://freescale.com/support
http://freescale.com/SalesTermsandConditions

	Introduction
	System overview
	EMC design tips
	Hardware design
	Single-layer PCB
	Placement methods
	Power supply and ground routing
	Decoupling and bypassing
	Crystal oscillator circuit
	Spacing and isolation
	Input and output port

	Software design
	Enable WatchDog function
	Refresh data direction setting registers
	Fill unused memory
	Define all interrupt vectors
	Select FLL engaged mode
	Reconfirm edge triggered
	Enable digital filter

	Conclusion
	References

