Case Study: Rapid implementation of an IoT device – OR – three engineers and three months

Tim Whitfield
Director of Engineering, Taiwan / ARM

TechCon 2015
IoT characteristics of end-point devices

- **Data**
 - Sense
 - Communicate
 - Security, authentication, trust

- **Battery**
 - Long battery life (days → years)
 - Long standby (hours → days)
 - Minimize energy
 - Device mostly asleep

- **SW / deployment**
 - Easy access & control
 - Maintain SW when devices are deployed
 - Scalability / updates

Cost
Cents not $s
Pence not £s
The Challenge

- Rapid prototyping of low-cost IoT endpoint
 - **Goal:** from RTL to GDS – 3 engineers, less than 3 months
 - Integration of ARM, TSMC and Cadence IP on a single die

- Build a silicon demonstrator platform
 - Fully compliant with ARM mbed OS
 - Simulate real end-point device characteristics
 - Expansion ports for third party development

- Enhance knowledge base
 - Understand challenges
 - Knowledge transfer to enhance IP quality
The Building Blocks

- IoT Subsystem
- Cordio Bluetooth LE Radio
- Artisan Physical IP
- Security Hardware
- TSMC Process Technology
- mbedOS
- **Cadence IP blocks**
 - External interfaces
Cordio Radio Integration - Logical

- **Hard macro**
 - Complex mixed-signal & RF
 - Real-time embedded firmware
 - Integrated Power Management Unit
 - Verilog model for loop-back testing

- **Synthesizable host interface**
 - AMBA-3 32-bit AHB component
 - Interrupt driven slave & master
 - Fully asynchronous Tx to Rx transfers
 - Side band signals – clocks, power management & DFT controls
ARM Cordio Radio – Physical Integration

- No mixed signal/RF knowledge required
- EDA agnostic complete physical design kit
 - Timing models for multiple PVT & extraction corners
 - Physical abstract for APR tools
 - Power intent description
 - DRC/LVS support
 - CDL and GDS
- Built in pad ring for radio I/O
- Layout guidelines for noise isolation
- Minimal external component BOM
 - 7 caps, 2 inductors, 2 crystals, antenna
Radio Integration for Digital Designers

- Avoiding supply coupling in bond wires
 - Requires ~100pF decoupling per supply
 - Fill capacitance in I/O is inefficient
 - Use MoM cap macros built by radio design team

- Avoid ground coupling through substrate
 - Requires guard-ring with well-ties to ground
 - Spacing between radio and digital chip depends on proximity of noisy sources
 - Guidance given by radio design team including well-tie macro with ground pin
Embedded Flash Integration

- eFlash requires 1.2V/2.5V supply
 - Data/control interface requires level shifting from 0.9V standard cell domain
 - Power isolation/sleep mode enable & low voltage read enable are 2.5V signals
 - Thick gate oxide level shifters required
- eFlash DFT mux/test code provided by TSMC
 - Simple RTL integration and example test bench
- High voltage prog pin for wafer testing
 - Pad (not bonded) provided by TSMC
- Analog pins (not bonded) for wafer testing
Rapid Implementation of IoT Endpoint

- ARM & TSMC have collaborated to provide the building blocks for the rapid implementation of low power and low cost IoT endpoints
 - Logical IP: IoT subsystem for Cortex-M, security
 - Physical IP: Optimized IP for compact, highly power managed implementations
 - Radio IP: Cordio pre-qualified and designed for integration in classic digital design flows
 - Software: From protocol stack to mbed OS for rapid proto-typing and software development
 - Process: Ultra low power process with embedded flash

- More than marketing!
 - Physical implementation completed by 3 engineers in 3 months
 - Taped out August 2015, silicon on boards now
Further Work

- **Short term**
 - Silicon bring up and demonstrator by end 2015
 - Reference flows, whitepapers and knowledge transfer
 - Improvements to power management and performance

- **Medium term**
 - Radio enhancements supporting new standards
 - Road map of IoT reference platforms
 - Security enhancements, CPU enhancements
 - Process enhancements – 40ULP and beyond
 - Physical IP to support near threshold operation
The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

Copyright © 2015 ARM Limited