Standard Cell Benchmarking: Avoiding 5 Common Pitfalls

2012/2013

Benchmarking Standard Cells

- Benchmarking is an important component of library selection
- Proper evaluation yields an appropriate selection of standard cell libraries
 - Optimize power, performance and area for your design
 - Compare "like" to "like"
- Pitfalls in benchmarking can lead to erroneous results
- What are these common pitfalls?
- How can they be avoided?

Critical Logic Benchmark Steps

Pitfall #1: Proper Constraints

Set proper constraints

- Control maximum transitions
 - ARM standard cells are clean to foundry guidelines for electromigration (EM)
 - EM is ensured by controlling edge rates, also referred to as transition times
 - Set in synthesis: 2/3 of the Liberty value
- Control maximum wire length
 - Wires have significant resistance variations in small geometries
- Control IO constraints
 - Relax if not important to prevent penalizing high frequency libraries
- Controlling transition and wire lengths have other benefits
 - Reduces long term reliability issues
 - Prevents timing closure issues during STA
 - Timing closure issues can arise due to wide wire resistance variation
 - Causes extrapolation outside tables
 - Seen at fast process corners and high temperature
- Match constraints for all benchmarks

Pitfall #1: Proper Constraints, "dont_use" Lists

Set proper constraints

- "dont_use" lists should vary with design targets
- High Performance targets
 - Don't use low drive cells, except low drive BUF/INV for hold fixing
 - Don't use cells targeting low power or high density
 - Use any cell types with optimized timing arcs
- High Density / Low Power targets
 - Use low drive cells
 - Don't use cells with high pin densities
 - Don't use cells targeting high performance (ex: cells with optimized timing arcs)
- All benchmarks
 - Don't use delay cells, except for hold fixing
 - Don't use specialty cells with same function as general cells (ex: latch-free clock gate)
 - Don't use non-scan flops, unless required by design

Pitfall #2: Parasitics

Account for parasitics

- WLM refers to the wire load models included in the Liberty (.lib) model
- Very inaccurate for most design
- Why? Wiring parasitics can dominate, especially at small geometries
- If WLMs must be used, the SAME WLMs should ^{Lil} be used for all vendors
- Use parasitic tables and physical synthesis
 - Physical synthesis supported by synthesis tools
 - Uses parasitic tables
 - Included in the ARM Routing Technology Kit or
 - Provided by the foundry

Pitfall #3: Power Network

Align power network to the architecture

- Architecture affects routing
 - Determines metal direction(s), best VIAs, pin accessibility
 - Direct relationship to best power grid
 - May affect proximity effects

Different architectures with different metal directions. Ideal power networks will vary.

X nm

∢----}

Pitfall #3: Power Network and Routability

Align power network to the architecture

- The power network is an important part of a benchmark
 - Poor cell design can result in a significant area hit with a power grid in place
 - Poor power grid can unnecessarily block routing resources
- ARM architects standard cells for optimal use with a power grid
 - Layouts consider a lower 2D grid on M2/M3 for libraries using M2 rails
- A proper power grid
 - Minimizes IR drop and EM
 - Allows for fast di/dt (switching) response
 - Uses narrow evenly spaced straps placed frequently
 - Places power and ground straps alternately
- A benchmark without a power grid does not account for library routability

Power Supply Overview

Recommendations & Considerations

Standard Cell Designer (IP Vendor)	Chip/block Design (Customer)	Reason
Largest cell supply rail possible		 Reduces IR drop Improves EM characteristics Allows for greater redundancy of supply VIAs (IR, EM, yield)
	 Lower 2D supply grid M2/M3 grid for libraries w/M2 rails M1/M2 grid for libraries w/M1 rails 	 Reduces di/dt Reduces resistance Reduces on-chip inductance to local decoupling capacitance Reduces VIA resistance versus using only an upper supply grid
	Upper 2D supply grid (top 2 metals)	 Reduces IR drop Handles global supply distribution Improves routing by freeing lower planes for signal routing

ARM

Pitfall #4: Tech file for routing

Use the appropriate tech file for routing

- Architecture affects routing
 - Different architectures may optimize for different metal pitch and VIA connections
 - Different vendor tech files may include different VIAs
 - Use vendor supplied tech files!

Pitfall #5: Optimize Utilization

Optimize utilization for the architecture and your design

- Architecture and power grid can affect utilization
 - Local routing congestion can limit utilization
 - Dial up utilization during benchmark 100% **High Performance Library Util Utilization Achieved High Density Library Util** 95% 90% 85% ***** 80% Most designs close blocks with a utilization between 70-85% 75% 70%

Frequency

GETTING RESULTS FOR YOUR DESIGN

Advanced Physical IP by ARM

Determining the Fastest Library

- Run synthesis and place and route (SP&R) on the RTL at smaller and smaller cycle times
 - Use a pin-and-aspect-ratio floorplan sets relative pin locations and aspect ratio
 - Include power grid: lower grid may differ across libraries
 - A rough initial cell utilization of 75% or higher is suggested for benchmarking
 - After CTS, routing, etc. this will be higher
- When the worst negative slack (WNS) starts increasing
 - You have found the theoretical fastest speed one can implement that library/design combination
 - The library that produces the fastest design is the fastest library: the winner
 - The area/routability/power consumption is *not* being measured here

Remember...

#1 The x and y of the floorplan and relative pin positions of the slowest library#2 The maximum frequency of the slowest library

Determining the Lowest Area* Library

*Area is the area of the final design size, *not* the area of all the cells within the floorplan

Remember...

#1 The x and y of the floorplan and relative pin positions of the slowest library#2 The maximum frequency of the slowest library

- The question now : For a given speed & lowest area, which library will still route?
- Method take the floorplan #1 from previous slide
 - The power routing should *not* be retained, only the x-y size and relative pin position
 - Power routes should be implemented per library as before
- SP&R both libraries at the same target frequency in this floorplan: Frequency #2 from previous slide
- Reduce area 5% at a time until libraries fail to route, or the achieved frequency starts to fall: either is considered the end point
- The library that routes in the smallest area at the target frequency wins

14

Determining the Lowest Power Library

Method

- Take the final design from the previous step for each library
- Take the last run before the end point
- Measure the dynamic and static powers for each of the 2 designs
- The winner is the one with the lowest power

ARM Internal Benchmarks

- Target a large design without large run times
- Understand critical path and logic levels
- Know constraints
 - max_transition
 - Utilization target
- Perform full flow
 - Synthesis, P&R with a power grid, CTS, hold fixing
- Use current EDA tools for library

Slack vs Target Clock Period

Sample libraries

Advanced Physical IP by

- Multiple clock constraints
- Watch where slack goes from zero to negative

Slack vs Target Clock Period

- Sample libraries
- Multiple clock constraints
- Watch where slack goes from zero to negative
- As slack goes negative, area increases

Benchmarking Standard Cells

- Benchmarking is an important component of library selection
- Proper evaluation yields an appropriate selection of standard cell libraries
 - Optimize power, performance and area for your design
 - Compare "like" to "like"
- Avoid the common pitfalls
 - 1. Set proper constraints
 - 2. Account for parasitics
 - 3. Align power network to the architecture
 - 4. Use the appropriate tech file for routing
 - 5. Optimize utilization

5 Common Pitfalls

- 1. Set proper constraints
 - Select target PPA priority and conduct benchmark
 - Optimize cell set with "dont_use" lists
 - Edge rates & wire lengths
- 2. Account for parasitics
 - Use the same parasitic tables for all vendors
- 3. Align power network to the architecture
 - Watch for blocked resources
- 4. Use the appropriate tech file for routing
 - VIA selection can be important
 - Metal pitch can change with architecture
- 5. Optimize utilization
 - Different libraries will have different utilization limits

