
Utilizing Vector Floating Point of ARM Processors in Compact Framework

by Jaafar Alsalaet

College of Engineering-University of Basrah

1.	Introduction	

 Most of the new ARM processors have Vector Floating Point (VFP) coprocessor which provide

hardware implementation of floating point operations. The VFP capability offers the enhanced

performance required in some applications such as automotive industry, Digital Signal Processing and

filtering, high-speed controllers and many other applications. For example, ARM11 processors have

optional VFPv2 as part of ARMv5TE and ARMv6 architecture which can be used as a part of System on

Chip (SoC) design. More advanced architecture based on ARMv7 implement VFPv3 as a part of Thumb

and ThumbEE instruc/on set. Two versions of VFPv3 are available; D32 and D16 with 32 and 16 double

word registers respec/vely. Using VFPv3 combined with NEON mul/media processing capability

greatly enhance the performance of image processing such as scaling, 2D and 3D encoding/decoding

and filtering.

 While some of the operating systems, such as Android and some Linux, can utilize the VFP capability

of ARM, Windows CE and Compact have restricted access to it especially when developing applications

for .NET Compact Framework. This article will shed some light on the utilization of VFP in such

environment. Two opera/ng systems will be discussed Windows CE 6 and Windows Embedded

Compact 7 with two pla9orms ARM11 and Cortex-A8.

2.	ARM11	with	Windows	CE	6	

 A Windows CE 6 pla9orm with S3C6410 processor (ARM11-1176) running at 667MHz is used in this

configura/on to test the VFP performance. Since Windows CE 6 BSP of the board does not support VFP

by default, the ARM VFPv2 subproject is added to the OSDesign project in Windows CE Pla9orm

Builder. This subproject generates a replacement FPCRT.dll library which utilizes hardware floating

point coprocessor. This is well documented in MSDN and some other sites.

 By default, Windows CE 6 pla9orm builder generates the standard Floating Point C Runtime library

(FPCRT.dll) which emulates all the floating point operations and transcendental mathematical

functions. Applications that wish to use floating point operations and mathematical functions simply

call the implemented functions inside FPCRT.dll. Fortunately, the FPCRT library can be replaced by OEM

to permit the utilization of VFP.

 Another problem arises about the ability of different applications to utilize the updated FPCRT.

Generally, there are two types of Windows applications:

1. Managed code which is produced by Just In Time (JIT) complier when compiling .NET compact

framework or CLR projects such as projects developed by Visual Basic or C#.

2. Unmanaged code (na/ve code) which is produced at build /me by C++ compiler/linker.

 The unmanaged code (applications developed by C++) are very efficient in utilizing FPCRT library

since both of them are in the same environment (native code). Moreover, the C++ project can be

compiled with certain compiler options (will be discussed soon) which forces the compiler to generate

VFP instruction to implement floating point operations directly without calling FPCRT functions. On the

other hand, managed code suffer from a degraded performance when calling FPCRT functions to

implement the required operations. This is due to the fact that managed code is executed in the virtual

(non-native) environment and need to perform P/Invoking and marshalling to call native functions of

FPCRT.dll or coredll.dll.

 Since .NET framework provide great flexibility and capability in software development, most

application are developed under its environment. These applications will generally be inefficient in

floating point and math calculations. One possible solution to enhance the performance is to mix

managed and unmanaged codes in one project. This is possible in full .NET framework by utilizing C++

CLR projects, but it is not available in compact framework. A solution to this problem is to implement

the intensive math calculations within the managed code by implementing native DLL functions that

are exposed to managed applications by Platform Invocation and data Marshalling. To reduce the

latency of P/Invoking and marshalling, it is recommended to issue few calls of bulky calculations over

using many calls of tiny calculations. In other words, use unmanaged code for math and managed code

for GUI.

 To get the best of the unmanaged code DLL, the following hints are found to be useful:

1. Do not use classes, make your project as simple as possible. Classes increase latency during call.

2. It is advisable to define exported func/ons with extern "C" directive to maintain the same function

name without decoration

3. To include VFP instruc/ons in the undamaged code for better performance, use " /arch:VFPv2

/QRfpe-" as additional options in compiler command line when compiling C++ DLL project. To do so,

you need to use a newer C++ compiler such as that one comes with VS 2008 or VS 2010. Windows

Embedded Compact 7 Pla9orm Builder comes with good compiler that can be u/lized. To use the

compiler of EC7 PB, follow the instruc/on of Adeneo: "Building WEC7 applica/on with ARMv7

compiler" in the following link http://www.adeneo-

embedded.com/content/download/10454/138018/file/Building%20WEC7%20applica/on%20with%20

ARMv7%20compiler%20-%20TI%20Benchmark.pdf

The "/QRfpe-" option tells the compiler to suppress the calling of FPCRT functions for floating point

normal operations (such as multiplications, additions....etc) and use hardware VFP instructions instead.

However, transcendental function will still be linked to FPCRT.dll.

 To test the software performance under different configurations, the Fast Fourier Transform (FFT)

func/on is used with number of points of 16384. The majority of FFT calcula/ons are floa/ng point

mul/plica/ons and addi/ons with some calls to sine and cosine func/ons. The /me of performing 100

FFT operation is estimated using GetTickCount() function. Table 1 below list the processing times for

different configurations. Managed means implementing the calculations inside .NET entirely, whereas

Unmanaged code refers to implementing the calculation inside pure native environment. Mixed code

refers to using .NET application that calls native FFT function built inside a DLL.

Table-1 Windows CE 6 with S3C6410 Processing Time (sec)

Configuration Managed Unmanaged Mixed

/QRfpe /QRfpe- /QRfpe /QRfpe-

Microsoft FPCRT 105 NA NA NA NA

ARM VFPv2 FPCRT 75.4 15.8 9.5 18.6 12.3

 It is clear from Table-1 that using ARM FPCRT has led to some /me saving over MicrosoL FPCRT in the

managed code application due to the using of hardware coprocessor in FPCRT.dll. However, the

performance is still not optimized due to native/managed code barrier. When the same calculations

are performed by pure unmanaged code, the processing time abruptly drops to 15.8 sec when

compiling without VFPv2 instruc/ons. This is reasoned to the efficient interac/on between unmanaged

code and FPCRT.dll func/ons. The /me is further reduced to only 9.5 sec when the project is compiled

with VFPv2 instruc/on support because multiplications and additions are performed directly by the

VFP coprocessor.

 When mixed configuration is implemented, the processing time is slightly higher than that of pure

unmanaged code but far less than the time of pure managed code. This is due to the latency of

P/Invoking FFT func/on by managed code for 100 /mes. However, great /me saving of more than 6

times is obtained when comparing with pure managed code implementation.

3.	Cortex-A8	with	Windows	Embedded	Compact	7	

 In this section, an ARM Cortex-A8 processor will be tested under Windows EC7. The selected board

has Samsung S5PV210 processor running at 1GHz and featuring VFPv3-D32 with NEON support. One of

the enhancements made to WIN EC7 is its ability to support hardware VFP without any third-party

tools or plug-in. The Pla9orm Builder of Windows EC7 already has the required VFP standard library

which is compatible with most of the ARM processors. The created FPCRT.dll contains the hardware

VFP instructions and VFP transcendental functions.

 When the same scenario applied before is used to test the Cortex-A8 pla9orm, the processing time is

generally less than that in ARM11 pla9orm due to the clock and architectural enhancements in Cortex-

A8. Table-2 shows the processing /mes for different configura/ons. It should be noted that in order to

support VFPv3 code genera/on during compila/on of C++ code under Visual Studio 2008, ARMv7

instruction set must be enabled. To do so, the procedure suggested by Adeneo has been applied as

follows:

1. An SDK that support ARMv7 has been generated for S5PV210 board and then installed.

2. ARM C++ compiler of WIN EC7 pla9orm builder has been used by adding a new directory to the C++

compiler for the SDK generated above.

3. The op/ons "/QRarch7 /arch:VFPv3-D32 /QRfpe-" has been added as additional compiler

options for the C++ project to force the compiler generate ARMv7 instruc/ons and also generate

hardware VFP instructions for normal floating points operations.

Note:

In order to support ARMv7 project linking, two directories (listed below) must be created and the sta/c

libraries must be cloned from the nearest architecture to these directories.

$(VCInstallDir)ce\lib\lib\ARMv7

$(VCInstallDir)ce\atlmfc\lib\ARMv7

Table-2 Windows EC 7 with S5PV210 Processing Time (sec)

Configuration Managed Unmanaged Mixed

/QRfpe /QRfpe- /QRfpe /QRfpe-

VFPv3 FPCRT 55.2 9.5 4.0 12.6 5.6

 It is clear from Table-2 that the processing /me of A8@1GHz is less than one-half of the time of

ARM11@667MHz for " QRfpe-" configuration despite the fact that the clock is shiLed by 150% only. It

can be concluded that the VFPv3 is more efficient than VFPv2. The processing time of mixed code is

about 1/10 of the /me of pure managed code.

