
1

The Making of Seemore WebGL

Will Eastcott, CEO, PlayCanvas

2

What is Seemore WebGL?
A mobile-first, physically rendered game environment powered by HTML5 and WebGL

3

PlayCanvas: Powering Seemore WebGL
Open-source, WebGL game engine with cloud-based visual tools

4

Did I Mention PlayCanvas is Open Source?
https://github.com/playcanvas/engine

5

Updating a Classic
The original C++ Seemore demo was significantly upgraded in terms of visuals

6

 Physically Based Rendering (PBR)

 Lightmapping

 Ambient occlusion

 Dynamic shadow mapping

 Box projected cube map reflection mapping

 …and a serious amount of optimization

So How Did We Do It?

7

 Energy Conservation

 Meaningful maps

 HDR data

 Tonemapping

 Gamma Correction

Physically Based Rendering: The Basics

8

Physically Based Rendering: Material Input Data

 Material

 Albedo (color information)

 Normal (surface information)

 Gloss (microsurface information)

 Metalness (optional)

 Opacity (optional)

9

Physically Based Rendering: Environmental Input Data

 IBL probes – prefiltered, box projected

cubemaps

 Used custom filtering tool

 PlayCanvas editor users will soon be able

to generate these cubemaps in the

interface

 Analytical lights (point/directional,

energy conserving Blinn-Phong)

 Lightmaps

 Everything must be HDR!

 Encode HDR to RGBM

10

Physically Based Rendering: Materials

 Schlick’s Fresnel approximation

 Toksvig’s factor for specular anti-aliasing

11

Tonemapping

 Important for getting rid of overly bright

or dark spots

 Generally simulates how the eye or film

perceives colors

 Seemore uses the ‘well known’

Uncharted 2 tonemap. See:

http://filmicgames.com/archives/75

http://filmicgames.com/archives/75

12

Lightmapping
Single map for scenes with static light sources

13

 Use indirect lightmap as base ambient

 Store directional static shadows in a separate lightmap

 Can store multiple shadows in a texture’s color channels for a slightly moving light

 Mask real-time diffuse/specular light with shadows

 Combine with real-time shadows

Lightmapping
Direct and indirect lightmaps for scenes with slightly moving lights

14

Lightmapping
Indirect lightmap

15

Lightmapping
Direct lightmap

16

Dynamic Shadows: Interpolated Lightmaps

17

Dynamic Shadows: Interpolated Lightmaps

18

 Real-time shadow maps for dynamic objects

 Very costly on mobile devices (draw calls, projection, reads)

 Only update shadow map every 3rd frame if objects are not moving

 Only use real self-shadowing with multiple taps on dynamic objects

 Just use bilinear lookup without depth comparison on static receivers

 Shadow is encoded as RGB (depth) and A (mask for bilinear lookup) in an 8-bit 1024x1024 texture

 Use Normal Offset bias to reduce self-shadowing artifacts

 See http://www.dissidentlogic.com/old/#Normal%20Offset%20GDC%20Materials

Dynamic Shadows: Shadow Mapping

http://www.dissidentlogic.com/old/#Normal%20Offset%20GDC%20Materials

19

Dynamic Shadows: Shadow Mapping

20

 Occluding IBL lighting (especially specular) is vital

 Specular occlusion should ideally be view-dependent but it’s too expensive for mobile

 Baked AO maps (tweak attenuation for specular occlusion)

 Can store multiple AO maps in channels (the plant’s mouth, for example)

 Last resort: derive some occlusion factor from single/indirect lightmaps

 Procedural AO for special cases (e.g. plant tentacles)

Ambient Occlusion

21

Ambient Occlusion

22

Box Projected Cube Map Reflections

 Widely used in games to make cube

maps fit in a more correct way with the

scene

 Used for both IBL reflections and

refractions

 Excellent primer on the topic here:

http://www.gamedev.net/topic/568829-

box-projected-cubemap-environment-

mapping/

http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/
http://www.gamedev.net/topic/568829-box-projected-cubemap-environment-mapping/

23

Box Projected Cube Map Reflections

24

 ETC1 Texture Compression (WEBGL_compressed_texture_etc1)

 Compressing textures is vital for low memory mobile devices

 WebGL is limited in the formats it exposes but does provide ETC1 (and DXT)

 Good results for diffuse, specular, gloss and lightmaps

 Bad results for normal maps

 Compressed the majority of normal maps anyway

 Remainder were left uncompressed when the results were particularly bad

 Use lowp in fragment shaders where possible

 Only precision-critical shaders (shadow mapping) retained highp

 Avoid costly math ops (pow, sqrt)

 Cull draw calls

 Sort opaque draw calls front to back

Optimization

25

Additional Tricks: Foliage

 Plants are translucent and pass light to the

back side

 Seemore plants are in a hemispherically lit room

 Just use –normal.y as a translucency factor

 Additional analytical per-vertex translucency

occlusion for the main plant

26

Additional Tricks: Halos

 Avoid full-screen effects

 Incurs high fill rate costs

 You lose hardware antialiasing

 Although it is possible to implement AA as

a post process, again, this is expensive

 Use a cheap alternative

 Transparent, camera aligned sprite

27

 We avoided an analytical approach

 Exposure controlled through script

 Dependent on location and view vector

Additional Tricks: Dynamic Exposure

28

 Instancing (ANGLE_instanced_arrays)

 Seemore was limited more on the GPU (fragment operations)

 The demo didn’t render enough instances to make a significant difference

 Variance Shadow Mapping

 Works well on desktop machines but a bug in Chrome’s float texture extension was problematic

 Encoding the shadow map to RGBA8 lost too much precision

Things That Didn’t Make The Cut

29

Putting It All Together

30

Putting It All Together

31

 The Open Source PlayCanvas project: https://github.com/playcanvas/engine

 The Cloud-Hosted PlayCanvas toolset: https://playcanvas.com

 The Seemore Demo: http://seemore.playcanvas.com

 ARM Mali Developer Center: http://malideveloper.arm.com

Some Links…

https://github.com/playcanvas/engine
https://github.com/playcanvas/engine
https://playcanvas.com/
https://playcanvas.com/
http://seemore.playcanvas.com/
http://seemore.playcanvas.com/
http://malideveloper.arm.com/
http://malideveloper.arm.com/

32

tanx.playcanvas.com

