
1

ARM® Mali™ Development Tools,

GPU, and 64-bits

Nathan Li – SGL of DevRel, Ecosystem, ARM Shanghai

CGDC 2014

2

1. Introduction of ARM® Mali™ Development Tools and Performance Profiling

 DS-5 Streamline™ Performance Profiler and Mali Graphics Debugger

 Using the ARM Mali GPU hardware counters to find the bottlenecks

 CPU bound, Vertex bound, Fragment bound, and Bandwidth bound cases

 Using MGD - an Overdraw and Frame Analysis case study (Epic Citadel)

2. Mali GPU Technologies for Game Developers

 Compressions - ASTC and AFBC

 Transaction Elimination

 Smart Composition

 Pixel Local Storage

3. 64-bit CPU & GPU synergy

4. Q & A

Agenda

3

Importance of Analysis & Debug

 Mobile Platforms

 Expectation of amazing console-like graphics and playing experience

 Screen resolution beyond HD

 Limited power budget

 Solution

 ARM® Cortex® CPUs and Mali™ GPUs are designed for low power

whilst providing innovative features to keep up performance

 Software developers can be “smart” when developing apps

 Good tools can do the heavy lifting

4

 4

Performance Analysis & Debug Tools

ARM® DS-5 Streamline™

Performance Analyzer

• System-wide performance analysis

• Combined ARM Cortex®

Processors and Mali™ GPU visibility

• Optimize for performance & power

across the system

ARM Mali Graphics Debugger

• API Trace & Debug Tool

• Understand graphics and compute

issues at the API level

• Debug and improve performance

at frame level

• Support for OpenGL® ES 1,1, 2.0,

3.0 and OpenCL™ 1.1

ARM Mali GPU Offline

Compiler

• Understand complexity of GLSL

shaders and CL kernels

• Support for ARM Mali-4xx and

Mali-T6xx GPU families

5

ARM® DS-5 Streamline™ Performance Analyzer

 System Wide Performance Analysis
 Simultaneous visibility across ARM Cortex® processors &

Mali™ GPUs

 Support for graphics and GPU Compute performance analysis
on Mali-T600 series

 Timeline profiling of hardware counters for detailed analysis

 Custom counters

 Per-core/thread/process granularity

 Frame buffer capture and display

 Optimize
 Performance

 Energy efficiency

 Across the system

 What’s New in 5.19
 Early access for Mali-V500 support

 User Space Gator now supports kernels 3.4 and later

6

ARM® Mali™ Graphics Debugger

 Graphics debugging for content developers

 API level tracing

 Understand issues and causes at frame level

 Support for OpenGL® ES 2.0, 3.0, EGL™ &

OpenCL™ 1.1

 Complimentary to DS-5 Streamline

v1.2.2 released in February

v1.3 released in July, 2014

7

Mali™ Graphics Debugger v1.3 Update

New features:

 Frame replay

 Replay the same frame in different modes:

overdraw, fragment count, etc.

 New binary data format

 Faster tracing and smaller files

 5-10x speed improvement

 Memory performance improvements

 We can capture 20M+ calls

 Better support for OpenGL® ES 3.0

 We can now trace GFXBench 3.0

 Bug fixes Latest release (July 2014):

Mali Graphics Debugger v1.3

8

Mali™ Offline Shader Compiler v4.3 Update

Last release:

 We have added support for the Mali

compiler version r4p0 of the ‘Midgard’

series

 This version introduces bug fixes and

performance optimization

 We are now supporting Mac OS X

again, additionally to Windows and Linux

Next releases:

 Mali Compiler r4p1 with Mali-T700

support

 Mali Compiler r4p0-rel01 for Mali-450

Last release (July 2014):

Mali Offline Shader Compiler v4.3

9

Mali™ OpenGL® ES Emulator v1.4 Update

The OpenGL ES Emulator is a library that maps
OpenGL ES API calls to the OpenGL API. It
supports OpenGL ES 2.0 and 3.0, plus additional
extensions.

In this release we have implemented:
 Single library with EGL/OpenGL ES
 Improved textures support
 Providing Mali-cube executable for

installation verification
 Debian Software Package (.deb) now

available for Ubuntu

The source code of the emulator has also been
completely refactored by our engineers.

Last release (July 2014):

Mali OpenGL ES Emulator v1.4

10

The Basics

 Software based solution
 ICE/trace units not required

 Support for Linux kernel 2.6.32+ on target

 Eclipse plug-in or command line

 Lightweight sample profiling
 Time- or event*-based sampling

 Process to C/C++ source code profiler

 Low probe effect; <5% typically

 Multiple data sources
 CPU, GPU and Interconnect hardware counters

 Software counters and kernel tracepoints

 User defined counters and instrumented code

 Power/energy measurements

User Space

ARM Processor

OpenGL® ES

Applications & Middleware

Linux Kernel

ARM® Mali™ GPU Drivers

gator Daemon

gator Driver

TCP/IP

T
arge

t D
e
vice

* Event-based sampling is available on kernels 3.0 or later

11

Main Bottlenecks

 CPU
 Too many draw calls

 Complex physics

 Vertex processing
 Too many vertices

 Too much computation per vertex

 Fragment processing
 Too many fragments, overdraw

 Too much computation per fragment

 Bandwidth
 Big and uncompressed textures

 High resolution framebuffer

 Battery life
 Energy consumption strongly affects User

Experience

CPU

Vertex

Shader

Fragment

Shader

Memory

Vertices

Textures

Uniforms

Vertices
Uniforms

Triangles
Varyings

Pixels
Textures
Uniforms
Varyings

12

“Epic Citadel” – A Case Study

13

Profiling via ARM® DS-5 Streamline™

 DS-5 Streamline to capture data

 Google Nexus 10, Android™ 4.4

 Dual core ARM Cortex®-A15, Mali™-T604

 Low CPU activity (CPU Activity -> User)

that averages to 24% over one second

 Burst in GPU activity: 99% utilization

 (GPU Fragment ➞ Activity)

 While rendering the most complicated

scene, the application is capable of 36

fps (29ms/frame)

14

The Application is GPU bound
The CPU has to wait until the fragment processing has finished

12ms

12ms

28ms

15

Vertex and Fragment Processing

 GPU is spending:

 186m (29%) on vertex processing

 (ARM® Mali™ Job Manager Cycles ➞ JS1 cycles)

 448m (70%) on fragment processing

 (Mali Job Manager Cycles ➞ JS0 cycles)
70%

29%

Fragment Count

Per Program

Fragment Cycles

Vertex Cycles

Setup work

There might be an overhead in the job manager trying to optimize vertex list packing into

jobs.

16

 Arithmetic instructions

 Math in the shaders

 Load & Store instructions

 Uniforms, attributes and varyings

 Texture instructions

 Texture sampling and filtering

 Instructions can run in parallel

 Each one can be a bottleneck

 There are two arithmetic pipelines so

we should aim to increase the arithmetic workload

ARM® Mali™-T628 GPU Tripipe Cycles

17

Inspect the Tripipe Counters
Reduce the load on the L/S pipeline

Load & Store 408m

Texture 197m

Arithmetic 105m

Tripipe Cycles 444m

GPU Cycles 448m

18

CPU

Vertex

Shader

Fragment

Shader

Memory

CPU Bound

19

CPU Bound

 Mali™ GPU is a deferred architecture

 Do not force a pipeline flush by reading

back data (glReadPixels, glFinish, etc.)

 Reduce the amount of draw calls

 Try to combine your draw calls together

 Offload some of the work to the GPU

 Move physics from CPU to GPU

 Avoid unnecessary OpenGL® ES calls

(glGetError, redundant stage changes,

etc.)

Synchronous Rendering

Deferred Rendering

20

CPU

Vertex

Shader

Fragment

Shader

Memory

Vertex Bound

21

Vertex Bound

 Get your artist to remove unnecessary
vertices

 LOD switching
 Only objects near the camera need to be

in high detail

 Tessellation is still not popular on Mobile,
and there are alternatives

 Use culling
 The earlier in the pipeline, the better

 Too many cycles in the vertex shader

22

CPU

Vertex

Shader

Fragment

Shader

Memory

Fragment Bound

23

Fragment Bound

 Render to a smaller framebuffer

 Move computation from the fragment
to the vertex shader (use HW
interpolation)

 Drawing your objects front to back
instead of back to front reduces
overdraw

 Reduce the amount of transparency in
the scene

24

 24

Overdraw

 This is when you draw to each pixel on the screen

more than once

 Drawing your objects front to back instead of back

to front reduces overdraw

 Limiting the amount of transparency in the scene

can help

Overdraw

25

Overdraw Factor

 We divide the number of output pixels

by the number of fragments, each

rendered fragment corresponds to one

fragment thread and each tile is 16x16

pixels, thus in our case:

90.7m (Mali™ Core Threads ➞ Fragment threads)

/ 143K (Mali Fragment Tasks ➞ Tiles rendered) x 256

= 2.48 threads/pixel

26

Investigation with the ARM® Mali™ Graphics Debugger

Frame Outline

Framebuffer /

Render Targets

Frame Statistics

States

Uniforms

Vertex Attributes

Buffers

Dynamic Help

API Trace

Textures

Shaders

Assets View

27

Frame Analysis
Check the overdraw factor

5-7x

1x
8x

2x

3-5x
3-5x

28

Shader Map and Fragment Count
Identify the top heavyweight fragment shaders

75%

14%

4%
7%

Fragment Count Per Program

Program 175

Program 280

Program 181

Others

~10m instances

/ (2560×1600) pixel

= 2.44

29

Shader Optimization

 Since the arithmetic workload is not

very big, we should reduce the number

of uniform and varyings and calculate

them on-the-fly

 Reduce their size

 Reduce their precision: is highp always

necessary?

 Considering the Differences between

GPUs (i.e., Mali™-450 or Mali-T764)

 Use the Mali Offline Shader Compiler!
http://malideveloper.arm.com/develop-for-

mali/tools/analysis-debug/mali-gpu-offline-shader-

compiler/

http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/
http://malideveloper.arm.com/develop-for-mali/tools/analysis-debug/mali-gpu-offline-shader-compiler/

30

CPU

Vertex

Shader

Fragment

Shader

Memory

Bandwidth Bound

31

Bandwidth

 When creating embedded graphics

applications bandwidth is a scarce

resource

 A typical embedded device can handle 5.0

Gigabytes a second of bandwidth

 A typical desktop GPU can do in excess of

100 Gigabytes a second

 The application is not bandwidth bound as

it performs, over a period of one second:

 Since bandwidth usage is related to energy

consumption it’s always worth optimizing it

(96m (Mali™ L2 Cache ➞ External read beats) +

90.7m (Mali L2 Cache ➞ External write beats)) x 16

~= 2.9 GB/s

32

 The current most popular format is

ETC Texture Compression

 But ASTC (Adaptive Scalable Texture

Compression) can deliver < 1 bit/pixel

Textures
Save memory and bandwidth with texture compression

3% 3%

64%

2%

28%

Texture Weight by Dimension

(Uncompressed RGBA)

Other

256 x 256

512 x 384

512 x 512

1024 x 1024

2560 x 1504

2048 x 2048

944 MB

236 MB
151 MB

Total Texture Memory

Uncompressed ETC1 ASTC 5x5

33

 Now it is an official extension to both the OpenGL® and OpenGL ES graphics APIs.

 A major step forward in terms of image quality, reducing memory bandwidth and thus

energy use.

 ASTC offers a number of advantages over existing texture compression schemes:

 Flexibility, with bit rates from 8 bits per pixel (bpp) down to less than 1 bpp. This allows content

developers to fine-tune the tradeoff of space against quality.

 Support for 1 to 4 color channels, together with modes for uncorrelated channels for use in mask

textures and normal maps.

 Support for both low dynamic range (LDR) and high dynamic range (HDR) images.

 Support for both 2D and 3D images.

 Interoperability. Developers can choose any combination of features that suits their needs.

 ASTC specification includes two profiles: LDR and Full.

Adaptive Scalable Texture Compression (ASTC)

34

 34

ASTC – LDR + HDR + 3D

RGBA

RGB

L

LA

RGB+A

X+Y

XY+Z

C
o
lo

r
Fo

rm
at

s

1 2 3 4 5 6 7 8
bits/pixel

35

 The ARM® Frame Buffer Compression (AFBC) protocol reduces the overall system

level bandwidth and power cost of transferring spatially coordinated image data

throughout the system by up to 50%.

 A lossless image compression protocol and format, AFBC minimizes the amount of data

transferred between IP blocks within an SoC.

 ARM Frame Buffer Compression has the following properties:

 Lossless data compression

 Random access down to 4x4 block level

 Bounded worst-case compression ratios

 Support for both YUV and RGB formats

 Compression ratios comparable to other lossless compression standards

 YUV compression ratio of typically 50%

ARM® Frame Buffer Compression

36

 36

AFBC Application In SoC

AFBC

DECODE
AFBC

ENCODE

AFBC

DECODE

Frame buffer objects

(render to texture)

Uncompressed textures

Display frame

 Employing AFBC throughout SoC saves significant system bandwidth and power

SW AFBC ENCODE

(TEXTURES)

CPU

GPU

DISPLAY CONTROLLER

37

This technology prevents the game from

wasting bandwidth while still utilizing GPU

resources to render tiles that haven’t

changed from previous frames.

 Every time the GPU resolves a tile-full of

color samples, it computes a signature

 Each signature is written into a list

associated with the output color buffer

 The next time it renders to that buffer, if

the signature hasn't changed, it skips

writing out the tile

Transaction Elimination
Helps reduce bandwidth consumption

More about Transaction Elimination here:
http://community.arm.com/groups/arm-mali-graphics/blog/2012/08/17/how-low-can-you-go-building-low-power-low-bandwidth-arm-mali-gpus

38

 38

 Surprisingly effective, even on FPS games and video

Transaction Elimination

Compare to sigs calculated for frame N+1

... ... sig sig sig sig sig sig sig

sig sig sig sig sig sig sig

sig sig sig sig sig sig

sig sig sig

sig

sig sig

sig

sig sig sig sig sig sig sig sig

sig sig sig sig sig sig sig sig sig

sig sig sig sig sig sig sig sig

sig sig sig sig sig sig

sig sig sig

Maintain a list of signatures for each tile

... sig sig sig sig sig sig sig ...

Where signatures match, don’t write the tile

39

 39

Smart Composition

 Reduce standard Android™ User Interface texture read bandwidth by better than 50%.

 Significantly reducing read bandwidth and composition work by ignoring repetitive tile data.

40

 Multi-Pass Rendering in OpenGL® ES:

 Pass 1:

 Pass 2:

 Pass 3: the final rendering result is shown at the right side 

 EXT_shader_pixel_local_storage

 enables applications to store custom data per pixel

 ARM_shader_framebuffer_fetch & ARM_shader_framebuffer_fetch_depth_stencil

 return the current color, depth, and stencil values of a pixel to the fragment shader

Pixel Local Storage on Mali™ GPUs

More about Pixel Local Storage on Mali GPU:

http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus

http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus
http://community.arm.com/groups/arm-mali-graphics/blog/2014/04/01/pixel-local-storage-on-arm-mali-gpus

41

ARM7TDMI ARM1176 Cortex-A9 Cortex-A50 series ARM926EJ

ARMv4

Increasing SoC complexity

Increasing OS complexity

Increasing choice of HW and SW

ARM® CPU Architecture Evolution

1995 2005 2015

Virtualization

42

 ARMv{Version/Extension/Class} – Generic Architecture Name

 ARMv8-A – ARM® architecture version 8, application class

 AArch64 – 64-bit execution state

 A64 – ARM instruction set

 LP64 – 64-bit data model

 ILP32 – 32-bit data model

 AArch32 – 32-bit execution state

 A32 – ARM instruction set

 T32 – Thumb instruction set

 ILP32 – 32-bit data model

 Interprocessing – Interaction of execution environments

A Little Taxonomy

43

Exception Levels & Interprocessing

44

ARMv8-A Architecture Designed for Efficiency
Enhancement Why it Matters

64-bit architecture

Increased number and size of

general purpose registers

Efficient access to large datasets

Gains in performance and code efficiency

Large Virtual Address Space Applications not limited to 4GB memory

Large memory mapped files handled efficiently

Efficient 32-bit/64-bit architecture Common software architecture (phone, tablet, clamshell)

A single software model across the entire portfolio

Double the number and size of

NEON™ registers

Enhanced capacity of SIMD multimedia engine

Cryptography support

Over10x software encryption performance

New security models for consumer and enterprise

45

ARM® Mali™ GPU Families

 Mali-400/450 MP (massive market share)

 Mid-range Leading GPU (32 bit HW Arch)

 OpenGL® ES 2.0 (up to 3.0) API Support

 Mali 6xx/7xx MP (high-end and mid-range)

 64-bit Architecture, ARMv8, IEEE-754-2008

 OpenGL ES 3.x API Support

HIGH-END

GPU

ROADMAP

Mali-T604
OpenGL® ES 3.0 support

Scalable to 4 cores

Mali-T628
50% performance uplift

OpenGL ES 3.0 support

Scalable to 8 cores

Mali-T760
4x energy efficiency of Mali-T604

Scalable to 16 cores

Major bandwidth reduction

Mali-T624
50% performance uplift

OpenGL ES 3.0 support

Scalable to 4 cores

Mali-T622
Smallest Full Profile GPU Compute solution

50% more energy efficient than Mali-T604

Mali-T678
Highest performance Mali-T600 GPU

OpenGL ES 3.0 support

Scalable to 8 cores

MID-RANGE

GPU ROADMAP

Mali-400 MP
First OpenGL ES 2.0 multi-core

GPU

Scalable to 4 cores

Leading area-efficiency

Mali-300
Entry-level OpenGL®

ES 2.0 GPU

Mali-T720
First OpenGL ES 3.0 GPU in

Mid-Range Market

Optimized for Android™

Reduced Time to Market

Mali-450 MP
Leading OpenGL ES 2.0 performance

2x Mali-400 MP performance

Scalable to 8 cores

Mali 3xx/4xx GPUs

Mali 6xx/7xx GPUs

46

64-bit Support on Mali™ GPUs

 Mali-4xx 64-bit Support

 DDK allocates memory from a proper range

- SoC venders map Mali-4xx memory space

(4 GB) into the system memory properly

 User Mode/Kernel Mode compatibilities (32

and 64-bit UMDs both on a 64-bit KMD)

 UMD driver generates the exactly same

GPU commands on 32 and 64-bit CPUs

 Pointer/Long/INT Type Castings in DDK

 The New AArch64 NEON™ Optimization

 Extended Life-cycles of Current Designs

 Mali-6xx/7xx 64 bit Support

 Native 64-bit GPU architecture (>4 GB memory

address space) – quite compatible with the CPU

 Unified Memory Management Backend in DDK

◦ Supports both the 32 bit and 64 bit systems

◦ Now ALL GPU Virtual Address = CPU Virtual

Address (up to 48 bit, only 4GB VA on 32-bit)

◦ Enhanced Debugging Experience (32 & 64-bit)

 GPU commands have been upgraded to utilize

the full 64-bit capability of the system, with the

access to much more data, than on 32-bit CPUs

 Extended Capabilities of GPU Compute (64-bit)

 Global Illumination

47

Summary

 Covered today:

 Introduction of ARM® Mali™ Development

Tools and Performance Profiling

 Mali GPU Technologies for Game

Developers

 64-bit CPU & GPU synergy

 Q & A

 For more information:

 malideveloper.arm.com

 www.ds.arm.com

 www.community.arm.com

 malidevelopers@arm.com

http://www.malideveloper.arm.com/
http://www.ds.arm.com/
http://www.community.arm.com/
mailto:malidevelopers@arm.com

48

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU

and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

Any Questions?

malidevelopers@arm.com

Nathan.Li@arm.com

mailto:malidevelopers@arm.com
mailto:malidevelopers@arm.com
mailto:Nathan.Li@arm.com

