arm

Contexts are key Contextualizing PBL projects effectively

Arm School Program with support from CBSE

© 2022 Arm

Learning outcomes:

- -- Understand the ASP schema
- Understand how to apply a context to the ASP schema
- Understand how to develop a problem set and create effective success criteria
- Understand how to scaffold and differentiate a Physical Computing project idea effectively
- Understand the hardware and delivery considerations for new Physical Computing projects
- Develop a new Physical Computing project on a novel context/theme
- Confidently iterate a new project after first delivery

Project Based Learning and Practical Computing

Hardware	Project-based learning (PBL)	Pro	ASP	
Basic electronics	Covering the curriculum	Applying techniqu		
IPO	Engaging learners with contexts	Design	Creativity	resources
Making	Solving real problems	6Cs	Collaboration	

arm School Program

Project Based Learning and Practical Computing

Hardware	Project-based learning (PBL)	Pro	ASP	
Basic electronics	Covering the curriculum	Applying techniqu		
IPO	Engaging learners with contexts	Design	Creativity	resources
Making	Solving real problems	6Cs	Collaboration	

arm School Program

The ASP Schema

Getting started

Success criteria

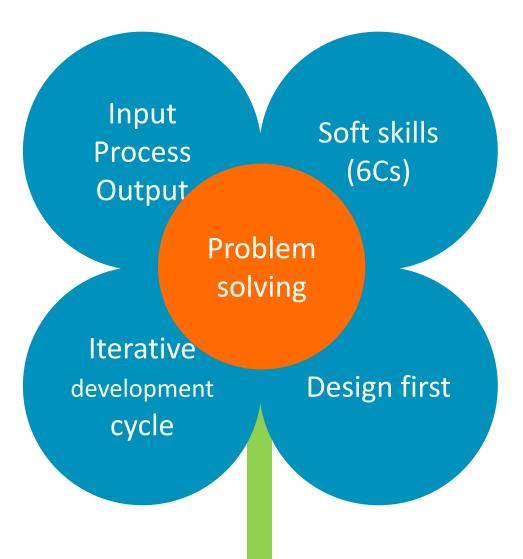
Pro-tips

Stretch tasks

Final thoughts

Context/Scenario Human narrative Familiar and relatable

Outputs/Objectives Start simple Be specific where needed End open ended


Scaffolded support Cheat sheets/resources Partial solutions

Additional criteria Adds related complexity Open ended

Reflective exercise Consolidate learning

Core elements of the approach

The Input Process Output (IPO) Model

- All computer systems take data into a system using 'Inputs', carry out processes on the inputs and then display the result of that processing using 'Outputs'
- Using the Input, Process, Output worksheet try to identify what the outputs will be

IPO table

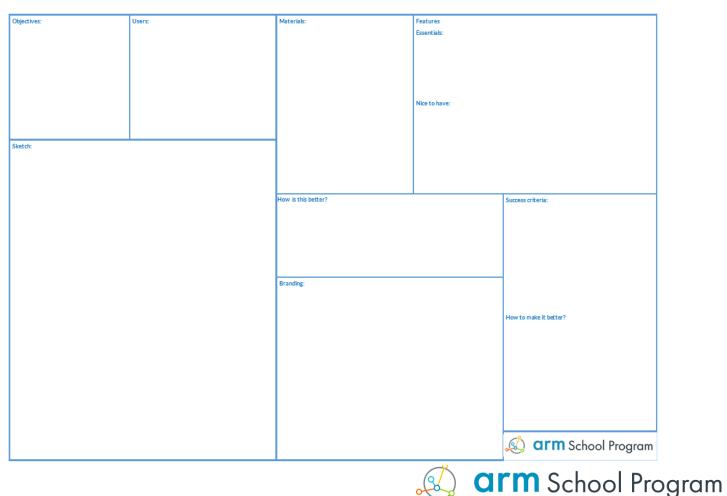
Input

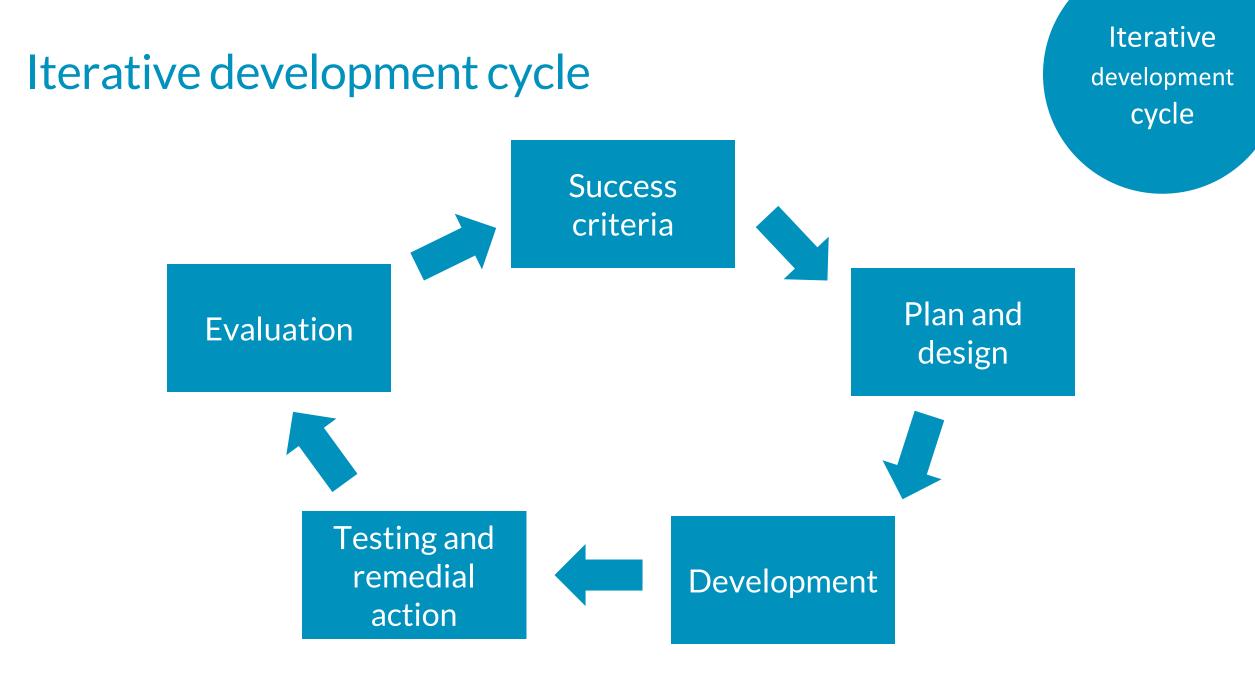
- Button press

Process

-- Records data

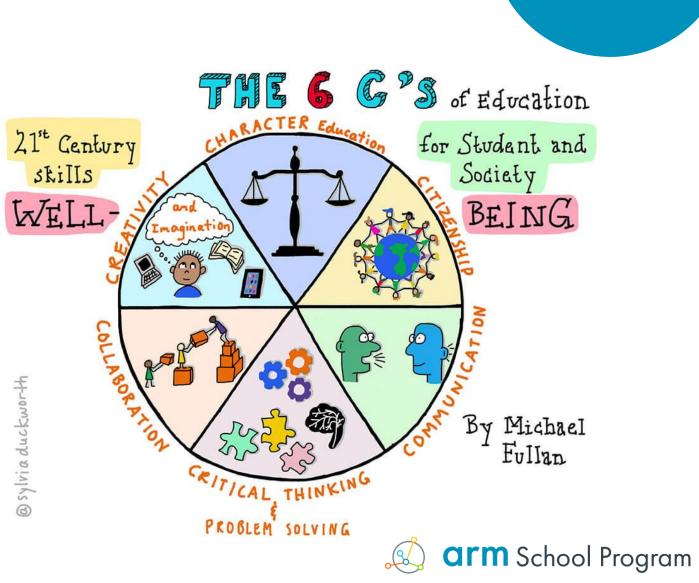
Input Process Output Output

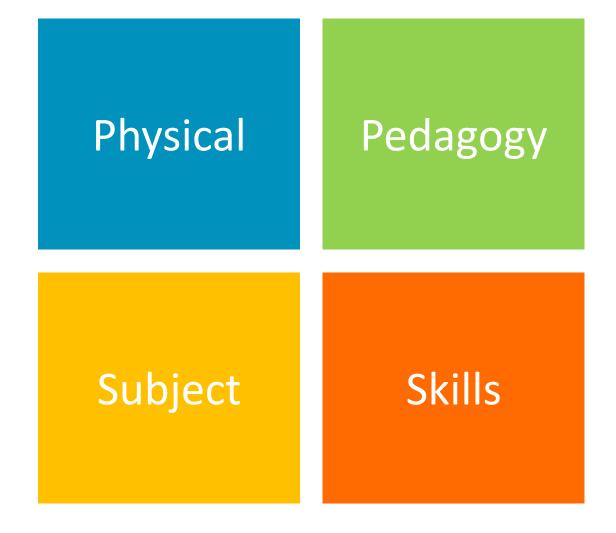

→ Graph on LEDs

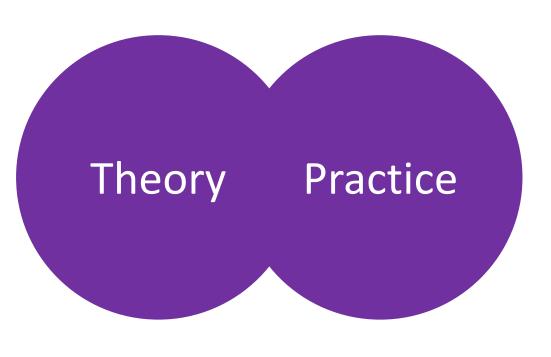

Design thinking

+ Concept designs and rapid prototyping

- + Iterating on designs
- Objectives
- Users
- + Sketching
- -- Materials
- + Features and prioritisation
- + Analysis, why is this better?
- -- Brand
- + What could be improved?


Design first


Soft skills


- Teamwork
- Collaboration
- Creative ideation
- Applied Computational thinking
- Communication
- Planning
- Iterative development
- Problem solving

Soft skills

(6Cs)

Why do contexts matter?

- + Engagement (if done well)
- Relatability/familiarity
- Roots the problem in the learner's world
- -- Sense of ownership over the problem set
- -- Makes a complex problem accessible
- -- Relates to subject domain
- Defines the constraints of the problem/project
- + Provides the 'big picture', the WHY?
- Adds a narrative construct

What do we mean by 'context'?

- The context is the circumstances that form the setting for the learning in terms of which it can be fully understood
- The theme or information relating to the challenges being set
- Ideally:
 - relevant to the learner
 - recognisable or familiar to the learner
 - thematically linked to their surroundings/educational setting
- Contexts can be *almost* anything

THE GLOBAL GOALS For Sustainable Development

Project Constraints

- Time
- + Hardware (digital)
- Access to PCs/internet
- Making resources
- + Space
- -- Tools
- -- Storage
- Budget/costs

Constraints for the project vs constraints for the learners

Introducing constraints to learners

- + Part of the 'engineering mindset' is dealing with constrained resources
- -- Limited making materials
- Limited functionality of dev boards
- Only prescribed hardware
- Limited time
- -- Constraints on storage/physicality
- + Specify in success criteria

Project context ideation

- -- What hardware is available?
- -- Big or small project?
- -- Focus on output or data gathering?
- -- Computational skill focus?
- How can a context be digitised or manipulated using computational techniques?
- -- Automation or smart X?
- -- Can the problem actually be solved given the constraints?

What engages your learners?

Subject or topic area of curriculum

Current affairs

Global Goals

Local issues

Open ended problems

- Allows creativity and interpretation to flourish
- Allows upwards differentiation
- Heeds to be carefully crafted/constrained
- -- Can be applied in success criteria or stretch tasks
- + Examples:
 - Make the artefact interactive, develop 3 distinct interactions
 - Make the artefact follow a pattern
 - Make the artefact store or transmit the data in a suitable format and structure
 - Make the artefact take input from a user and output appropriate noises

PBL project design considerations

- What will motivate my learners?
- -- Is the context relatable?
- -- Does the context need to 'pop'?
- --- Is everything new or just the problem set?
- Am I overburdening the learning?
- -- How can I ensure sufficient progress is made?
- -- Is there enough scaffolding to support learning?
- Are my learners resilient enough to succeed?
- -- How can I assess my learners progress?

Where to start?

- Start with one of these areas
- Ideate the other areas to 'gap fill'
- Ensure the project is realistically achievable
- Write a simple narrative for the context
- Create some success criteria
- Refine
- Build the artefact yourself!
- Develop appropriate scaffolding

Example project 1 – Drama (cross curricula/feature/subject)

Context setting:

Your school is putting on a production that requires the lights and sound or set to be automatically controlled by the performer's gestures. You can combine any gesture with any lights/sound/set sequence or action that will enhance the performance.

The theme of the production is <**insert relevant local context**>.

Hardware:

- 2x micro:bits
- Lights or models of
- Sound generation/or model of
- Set automation/animatronics

Success criteria:

Create a device that recognises when a gesture is performed and then transmits a signal to another device that triggers the light/sound/set action.

Design 3 different pairs of gesture/action that combine sound/light/set actions to enhance the performance.

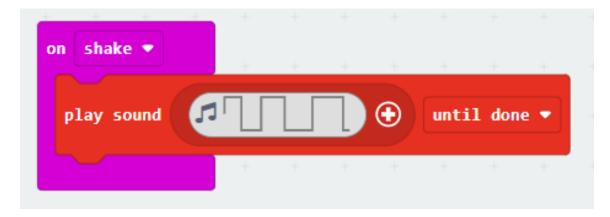
Subject focus:

- Automation
- Interaction
- Set interaction/design
- Sound triggering/design
- Light triggering/design

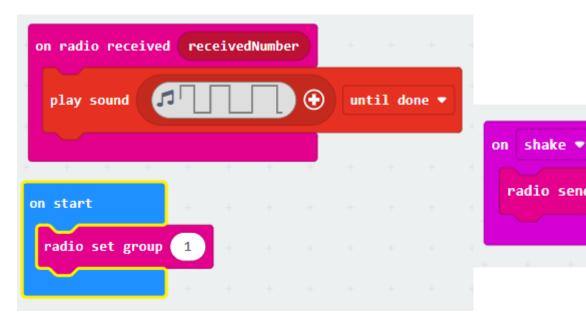
IPO table

Input

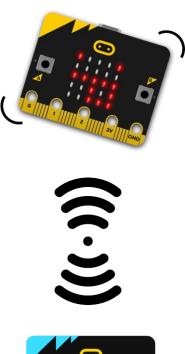
- -- Gesture 1 (Shake)
- -- Gesture 2 (Freefall)
- -- Gesture 3 (6G)

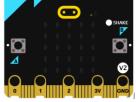

Process

- Transmit to other micro:bit
 then trigger a light action
- Transmit to other micro:bit then trigger a sound
- Transmit to other micro:bit then trigger a set action


Output

- Light sequence triggered
 (DMX or modelled with LEDs)
- Sound on micro:bit or trigger
 a sample on
 PC/Sampler/instrument
- Animatronic process, set movement, pyro, balloon release, smoke, motor/servo, curtain release etc.





- -- Square wave used to create a 'laser' type sound
- + Triggered by a shake

-						
	Editor Gallery 🗙					
+ -						
ne 🔻						
+ •	Waveform: Square					
	∧ л ∧ № Duration (ms) 500					
	Frequency Effect $- \checkmark$ Interpolation $\checkmark \checkmark$					
er' type	2983Hz					
	1Hz Volume					
	255 255					
	C Generate Similar Sound					
shake 🔻	on start					
adio send number (0 radio set group 1					

arm School Program

Example project 2 – Geography (from a school context)

Context setting:

The headteacher is concerned about air pollution levels in the school pick up point due to the amount of vehicles. They have asked you to create a device to monitor the air quality in your school at various times of the day to see when air quality is best/worst during a normal school day.

Hardware:

- Micro:bit/Arduino/Rpi 4/PicoW
- Air quality sensor

Success criteria:

- Build a device that can measure air quality over a typical school day
- The device should either store the data locally or transmit the data to another device/PC for analysis
- Analyse the data and create a report on what factors impact air quality as well as making recommendations to improve air quality where appropriate

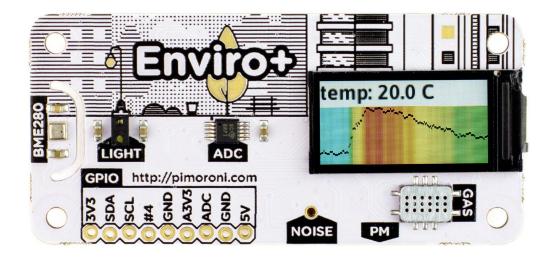
Subject focus:

- **Fieldwork**
- Data collection and sampling
- Quantitative data analysis percentiles

IPO table

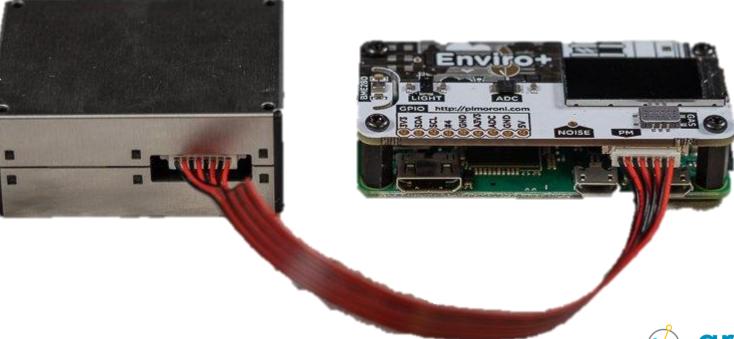
Input

- + Temperature sensor
- -- Air pressure sensor
- + Light sensor
- Gas sensor
- Microphone
- Particulate matter sensor


Process

- Threshold for output trigger
- Data capture/storage in tables/variables/lists
- -- Create graphs

Output


- + Data mapped to .csv
- -- Graphs onscreen/dashboard
- + Warning light/sound
- + Transmit data over Wifi/radio

Luftdaten

+ <u>https://devices.sensor.community/</u>

Example project 3 – Music (from the device features)

Context setting:

You have been asked to create an autonomous digital band that play a random tune in the key of C. The band should have a bass, mid and treble element. The band need to be triggered by a button press from the conductor. The conductor needs to be able to change the movement of the song being played by using gestures. These should be short pre-programmed arrangements in another key.

Hardware:

4 micro:bits (V2) with battery packs

Success criteria:

- Program 4 micro:bits to form a digital band
- Have 1 conductor:bit to control the band
- Have 3 band:bits (bass, mid, treble) all randomly playing melodies in the key of C
- The conductor:bit should be able to trigger short preprogrammed arrangements (in another key) using gestures

Subject focus:

- Bass mid treble
- Harmony
- Key of C
- Automation of note composition
- Gestures and movements

IPO table

Input

- -- Button press
- -- Gesture detection

Process

- Random music algorithm in
 C
- -- Music arrangement in E

Output

- + Radio transmission
- Music from speakers
- + Music direct to PA via jack

Micro:bit orchestra

- + <u>https://www.captaincredible.com/microbit-orchestra/</u>
- + <u>https://www.youtube.com/watch?v=gLZGRN_SYJs</u>
- + <u>https://youtu.be/hsJHWqQpvHA</u>

Example project 4 – Physics (from the curriculum)

Context setting:

Your Physics teacher has asked you to create a device that can accurately measure the acceleration of a trolley down a ramp.

Hardware:

- 1 micro:bits (V2) with battery pack
- Trolley
- Ramp

Success criteria:

- Create a device that can accurately and consistently measure acceleration
- The device must be able to control independent and dependant variables to mitigate human error
- The data gathered needs to in a .csv format
- You must analyse the data to determine which variables increase acceleration

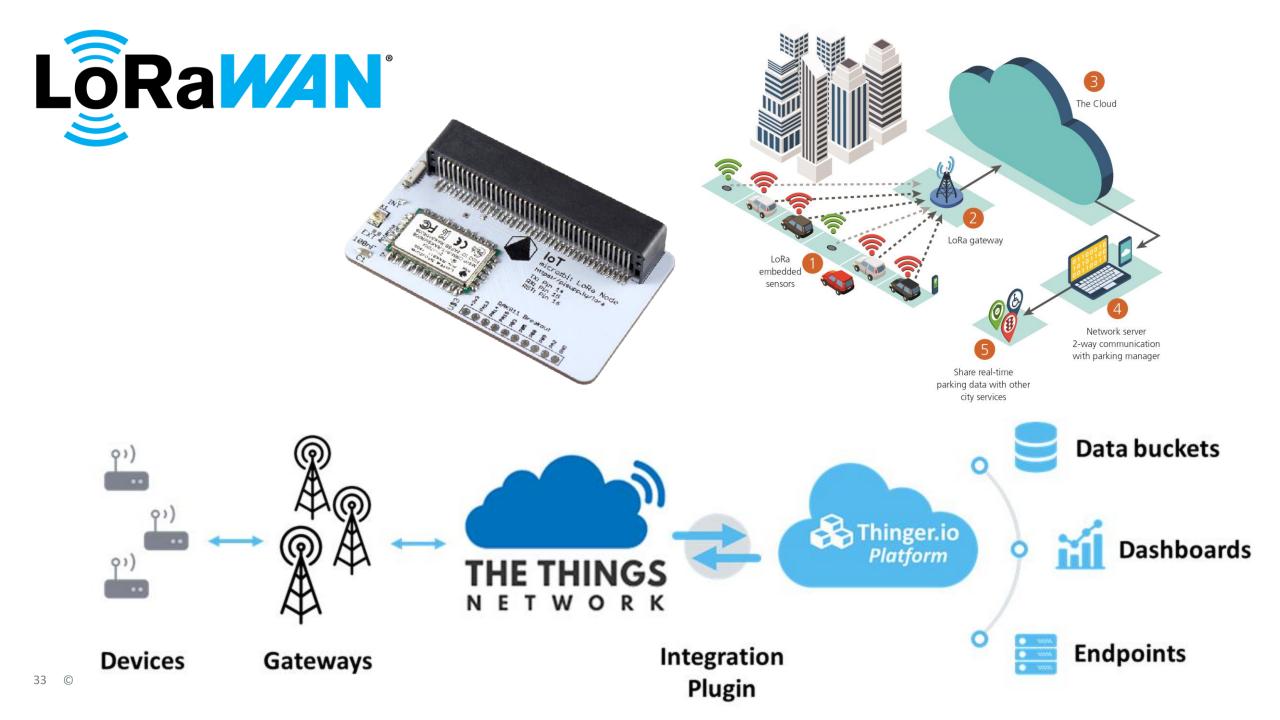
Subject focus:

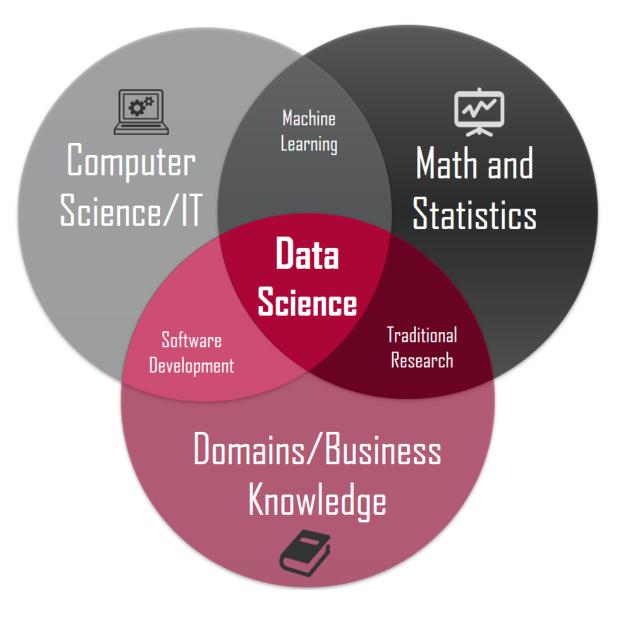
- Acceleration
- Independent, dependent and control variables
- Human error and scale (digitisation of measurement)
- Anomalous and average data

IPO table

Input

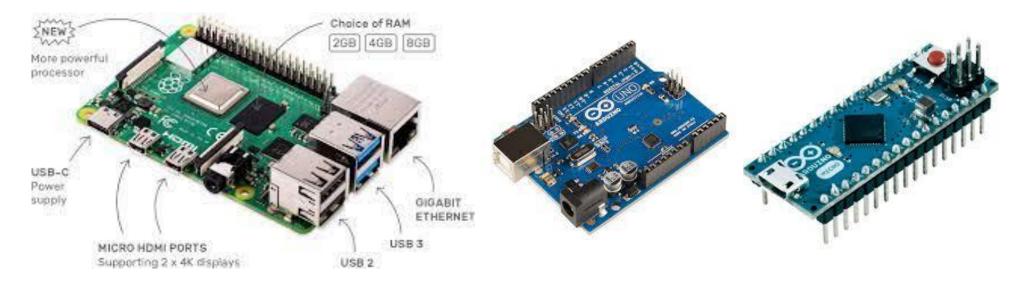
+ Button press


Process


- Data logging of movement

Output

- Radio transmission of data
- + .csv via USB
- + Graphing to LEDs



Data Science

- The next tech wave
- A new subject?
- Where would it live in the curriculum?

Other devices

Over to you!

- + Using the templates demonstrated above create your own PBL projects
- + Try them with a class
- -- Iterate on it to improve delivery
- + Share them with colleagues and peers online
- + Share them with the Arm School Program

Teaching with Physical Computing

A new series of PD courses from the Arm School Program

A course for teachers on Physical Computing and how to apply it through Project-Based Learning in the classroom.

Teaching with Physical Computing

Search for "Project-Based Learning" on edX.org **Course 1** Introduction to Project-Based Learning

Course 2 Practical application and classroom strategies for PBL

Course 3 Assessment of Project-Based Learning

Course 4 Soft skills, teamwork and the wider curriculum

tudents First

arm

Q & A

Robert Leeman, Educational Solutions Manager, Arm × × Nick Sample, Senior Manager, Arm School Program × ×

 $\times \qquad \times \qquad \times$ \times \times \times \times \times \times \times \times \times \times \times \times \times

					×	×	
Darike					×		×
Gracias × Grazie 谢谢							
× Merci 감사합니다							
ूधन्यवाद Kiitos							
شکر ًا ধন্যবাদ							
תוִדה ×						D 2022 Arm	×