

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 1 of 16

ARMv8-M Architecture Technical Overview

10-Nov-2015

Joseph Yiu

Senior Embedded Technology Manager, CPU Product Group, ARM

Introduction
ARM Cortex®-M Processors are the most popular processor series in the electronics industry. With

over 300 licenses, the Cortex-M processors are available in over 3500 microcontroller parts from

most of the microcontroller vendors, and are also used in wide range of embedded applications

including sensors, wireless communication ASICs, power management ICs and as companion

processors within complex SoCs.

The existing Cortex-M processors are based on two architecture versions:

• Cortex-M3, Cortex-M4 and Cortex-M7 are based on ARMv7-M architecture

• Cortex-M0, Cortex-M0+ and Cortex-M1 are based on ARMv6-M architecture

The architecture specifications define the behavior of the processors from both software and debug

points of view. For example, the instruction set, programmers’ model, exception model, and debug

registers, which are visible to debug tools, are all defined by the architecture specifications. Each

architecture can result in multiple processor implementations, which in turn can be used in multiple

SoC products.

Building on the success of the existing ARMv6-M and ARMv7-M architectures, ARM has created the

ARMv8-M architecture. The ARMv8-M architecture remains a 32-bit architecture, and is highly

compatible with existing ARMv6-M and ARMv7-M architectures to enable easy migration of software

within the Cortex-M processor family.

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 2 of 16

The partitioning between ARMv6-M and ARMv7-M is essential due to the diverse requirements of

embedded processors across different applications. To allow for the continuation of diversity, the

new ARMv8-M architecture is divided into two profiles:

• ARMv8-M Baseline – A sub-profile of the ARMv8-M architecture for processor designs with

low gate count and a simpler instruction set. It is similar to the ARMv6-M but with some

significant enhancements. This is ideal for a wide range of ultra low power designs.

• ARMv8-M Mainline – This is the full feature sub-profile of the ARMv8-M architecture for

mainstream microcontroller products and high performance embedded systems. It has a

richer instruction set to address the demands in complex data processing. It is similar to the

ARMv7-M but with additional enhancements.

By having two different profiles, different type of processors can be designed to address different

requirements, as addressed by the range of Cortex-M processors available today. The Baseline

sub-profile is a subset of the Mainline sub-profile and by including even more in this sub-profile

(compared to ARMv6-M), it is even easier to migrate application code between the sub-profiles.

As in previous versions of the architecture, the specification does not restrict the implementation

details. Each of the future generation Cortex-M processors can implement additional

implementation specific features. This document outlines the enhancements in ARM’s M-profile

architecture and does not cover processor specific implementation details.

Architectural Enhancements Overview
A range of enhancements have been incorporated in the ARMv8-M architecture. One of the key

enhancements available in both ARMv8-M Baseline and ARMv8-M Mainline is a security extension

called TrustZone® technology.

The addition of connectivity in to embedded systems is enabling a whole new range of connected

intelligent devices. One of the key challenges of this demand for connectivity is the security of

embedded devices. To help address the security requirements of embedded devices, ARM

developed TrustZone for ARMv8-M, and is included as part of the ARMv8-M architecture.

Conceptually TrustZone for ARMv8-M is similar to the TrustZone technology found in ARM Cortex-A

Processors. The underlying operations of TrustZone for ARMv8-M are however very different as

they are optimized for embedded systems that requires real-time responsiveness, whilst at the

same time allowing for high energy efficiency and low silicon area overhead.

In addition to TrustZone technology, there are a range of additional architecture enhancements.

ARMv8-M Baseline enhancements include:

• Hardware divide instructions

• Compare and branch and 32-bit branch instructions

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 3 of 16

• Exclusive access instructions

• 16-bit immediate data handling instructions (MOVW, MOVT)

• Load acquire, store release instructions (C11 atomic variable handling)

• New instructions for TrustZone technology support

• Support for more interrupts

• New style MPU (Memory Protection Unit) programmer’s model. The MPU uses the

Protected Memory System Architecture (PMSA) v8 enabling improved flexibility in MPU

region definition

• Better debug capability – enhancements in breakpoint and watchpoint units.

Many of the instructions added to the ARMv8-M Baseline (relative to ARMv6-M) are available in the

ARMv7-M architecture.

ARMv8-M Mainline enhancements (relative to ARMv7-M) include:

• Load acquire, store release instructions (C11 atomic variable handling)

• Floating point extension architecture v5 (Cortex-M4 processor is based on FPv4)

• New instructions for TrustZone technology support

• New style MPU programmer’s model - using the Protected Memory System Architecture

(PMSA) v8 – enabling improved flexibility in MPU region definition

• Better debug capability – enhancements in breakpoint and watchpoint units.

These architectural enhancements enable better software design in a number of ways. For

example, under PMSAv8 the new MPU programmer’s model removed some of the previous

restrictions in the definition of MPU memory regions.

For example, the MPU in ARMv6-M / ARMv7-M requires that an MPU memory region starts from an

address which is a multiple of the region size, and the region size must be a power of two. Thus,

when creating a memory region from an address 0x3BC00 to 0x80400, multiple MPU region

registers are required, as shown in Figure 1.

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 4 of 16

Figure 1:PMSAv8 enable flexible memory region definitions

With PMSA v8, memory regions are defined using the starting address and ending address (with 32

byte region granularity). Thus the same memory region can be defined by using only one set of

MPU region registers.

Comparing ARMv8-M Baseline to ARMv6-M architecture, there are a number of new instructions

taken from ARMv7-M:

Instructions Advantages

Hardware divide Faster integer-divide operations and removes the needs for

run time library functions for integer divide handling

Compare and branch More efficient conditional branches in some cases

32-bit branch instruction Longer branch ranges

Exclusive accesses Better semaphore support for multi-processor systems

The inclusion of MOVW and MOVT instructions

allows larger immediate values to be generated

with a fewer numbers of instructions. This also

enables a firmware protection technique called

eXecute-Only-Memory (XOM, Figure 2) to be used

efficiently. Some embedded systems protect on-

chip firmware with XOM which only permits

instruction fetches and hence the data cannot be

read using data/debug accesses. In this way,

application code can utilize the on-chip firmware by

calling an API, but the on-chip firmware cannot be

reverse engineered.

Since data read is not possible for such protected

firmware, these program images cannot contain
Figure 2:XOM technique for firmware protection

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 5 of 16

literal data and hence constant data is generated with instructions with immediate data. The

inclusion of MOVW and MOVT enables large immediate values to be generated efficiently.

The load acquire and store release instructions are for handling atomic data types as defined in the

C11 standard. These memory access instructions implement the release-consistency (RCsc)

memory model, reducing the need for explicit memory barrier instructions. The enhancements

added include load and store instructions for different data sizes, as well as exclusive variants.

Support for load-acquire and store-release was first available in the ARMv8-A architecture, and is

added to ARMv8-M for consistency across architectures. While most microcontroller application

code today might not use C11 atomic types, they are increasingly becoming common in high-end

software development and inclusion of these instructions help make next generation Cortex-M

products even more future proof.

Overview of security technologies in embedded processors
The most significant enhancement in the ARMv8-M architecture is the inclusion of the TrustZone

security extension, a technology that adds a new dimension of security control allowing multiple

security domains within a single processor system, and which cannot be implemented with legacy

processor solutions. It is important to understand that it is possible to create secure embedded

system designs with processors based on the ARMv6-M and ARMv7-M architectures – TrustZone

technology enhances the security and simplifies development. It is also important to understand that

TrustZone technology and the anti-tampering features in ARM SecurCore processor products are

independent technologies.

The following table explains various forms of security in embedded systems.

Security feature level Solutions

Application level security

The processor based system is created with the

application software executing in a single security

domain. Interfaces to the system are designed with

security in mind, and communication with other systems

(e.g. cloud server) is protected with sufficient security

mechanisms (authentication, encryption, etc).

All existing processors can

achieve this providing that the

software does not have

vulnerabilities and the

communications and interfaces

use appropriate protection

methods.

Privilege level security

OS kernel and application code are partitioned into

privileged and unprivileged states, with various types of

access restrictions imposed on unprivileged application

tasks (e.g. memory protection using MPU). This provides

a safety net that prevents a single point of failure in an

unprivileged task from leading to a complete

Processors with privileged and

unprivileged execution states,

with MPU or MMU for memory

protection.

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 6 of 16

compromise of the system.

TrustZone security

An additional security state to allow full isolation of two

security levels. The processor architecture is designed

with additional security state(s). This, combined with

hardware level protection measures, makes it impossible

for normal software (in Non-Secure state) to access or

modify information (both instruction and data) in Secure

state(s). This enables a root of trust in an embedded

system, and addresses a wider range of security

requirements in next generation embedded products.

ARM Cortex-A Processors and

next generation Cortex-M

Processors.

Anti-tampering security

Product system level and chip level design techniques to

prevent lab environment hacking attempts. Processors

are designed with features to prevent physical form of

information leaks such as power and timing signatures.

ARM SecurCore processors and

specialized chip design

techniques such as memory

contents encryption / scrambling.

With the existing Cortex-M0+, Cortex-M3, Cortex-M4 and Cortex-M7 based products, an application

can execute various software components such as communication stacks in unprivileged states and

use the MPU feature to protect system from memory corruptions. In this way, even if the software

stack suffers from an attack and fails, the rest of the system can still be functional because of the

separation of privileged and unprivileged states.

Systems that require multiple applications or multiple security domains on a single Cortex-M

processor can be challenging to design. This is because it is often impractical to run the application

entirely in unprivileged state as there are many restrictions on programs executing in this state.

Some designs, for example a complex SoC, use multiple Cortex-M processors for system

management and offloading I/O tasks. Thus, some of these Cortex-M processors can be in a

permanent Secure domain (e.g. system management) and others in a permanent Non-Secure

domain (e.g. offloading of peripheral tasks). TrustZone for ARMv8-M is designed to simplify such

systems without the need for multiple processors, and potentially allow these systems to be built at

lower cost.

Introducing TrustZone® for ARMv8-M
TrustZone for ARMv8-M adds an extra state to the operation of the next generation Cortex-M

processors so that there is both a Secure and Non-Secure state. These security states are

orthogonal to the existing Thread and Handler modes, thereby having both a Thread and Handler

mode in both Secure and Non-Secure states. Note that the Thread mode can also be either

Privileged or Unprivileged.

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 7 of 16

Handler mode

Thread mode

Handler mode

Thread mode

Secure Non-Secure

Figure 3: TrustZone for ARMv8-M adds Secure and Non-Secure states to a processor’s operation

Similar to TrustZone in Cortex-A processors, code running in Secure state can access both Secure

and Non-Secure information, whereas Non-Secure programs can only access Non-Secure

information.

TrustZone for ARMv8-M is an optional architecture extension. By default the system starts up in

Secure state if TrustZone security extension is implemented. If TrustZone security extension is not

implemented, the system is always in Non-Secure state.

TrustZone for ARMv8-M is designed with small energy efficient systems in mind. Unlike TrustZone

in Cortex-A processors, the division of Secure and Non-Secure worlds is memory map based and

the transitions takes place automatically without the need of a Secure Monitor exception handler,

thus eliminate switching overhead.

A designer of a microcontroller or SoC device defines the memory spaces into Secure and Non-

Secure areas. Some of the regions can be defined by software using a new unit inside the

processor called the Security Attribution Unit (SAU), or by device specific controller logic connected

to a special Implementation Defined Attribution Unit (IDAU) interface on the processor.

Address

Security Attribution
Unit (SAU)

Implementation
Defined Attribution

Unit (IDAU) interface

Optional IDAU
(System specific
attribution unit,

outside processor)

Compare

Secure / Non-Secure

Figure 4: Security attribute defined by optional SAU and IDAU

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 8 of 16

The SAU is programmable in Secure state and has a programmer’s model similar to the Memory

Protection Unit (MPU). The SAU implementation is configurable by chip designers: it is always

presented but the number of regions is defined by the chip designer. Alternatively, chip designers

can use an IDAU to define a fixed memory map, and use a SAU optionally to override the security

attributes for some parts of the memory.

The processor state is dependent on the memory space definition: when the processor is running

code in a Secure region it is in Secure state, otherwise it is in Non-Secure state. Application code

can branch to/call code in the other domain, and the processor detects the security domain switches

automatically. Since an application can access functions in the other domain directly, TrustZone for

ARMv8-M is easy to use and is very flexible.

The Secure memory space is further divided into two types:

• Secure – contains Secure program code or data (including Secure stack, heap and any

other Secure data)

• Non-Secure Callable (NSC) – contains entry functions (e.g. entry point for APIs) for Non-

Secure programs to access Secure functions.

Typically NSC memory regions contain tables of small branch veneers (entry points). In order to

prevent Non-Secure applications from branching into invalid entry points, a new instruction called

SG (Secure Gateway) is introduced. When a Non-Secure program calls a function in the Secure

side:

• The first instruction in the API must be an SG instruction.

• The SG instruction must be in a NSC region (defined by the SAU or IDAU).

The reason for introducing NSC memory is to prevent other binary data (e.g. a look up table) which

has a value the same as the opcode as the SG instruction being used as an entry function in to the

Secure state. By separating NSC and Secure memory types, Secure program code containing

binary data can be securely placed in a Secure region without direct exposure to the Non-Secure

world, and can only be accessed via valid entry points in NSC.

If a Non-Secure program attempts to branch / call into a Secure program address without using a

valid entry point, a fault event is asserted. In ARMv8-M Mainline, a new fault exception type

SecureFault is introduced (exception number 7). For ARMv8-M Baseline, the fault event is handled

by HardFault in Secure state.

Two other new instructions are introduced for Secure state programs to switch to Non-Secure state:

BXNS and BLXNS. When a Non-Secure program calls a Secure API, the API completes by

returning to Non-Secure state using a BXNS instruction.

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 9 of 16

Non-Secure world Non-Secure Callable (NSC)

…
BL Func_A_entry
...

Func_A_entry
 SG ; Indicate valid entry
 B Func_A

Secure world

Func_A
 … ; Function
 BXNS LR

Figure 5: Software flow when Non-Secure program call a function (e.g. API) in Secure side

TrustZone for ARMv8-M also allows a Secure program to call Non-Secure software. In such case,

the Secure program use a BLXNS instruction to call a Non-Secure program. During the state

transition, the return address and some processor state information are pushed onto the Secure

stack and the return address on the Link Register (LR) is set to a special value called

FNC_RETURN:

Non-Secure world Secure world

…
BLXNS R0 /* R0 = address of Func_B with MSB = 0 (NS)*/
...

Func_B
 … ; Function
 ...
 ...
 ...
 BX LR

Return Address push to
Secure stack, LR set to

FNC_RETURN

Branch to FNC_RETURN
triggers unstacking of return
address from Secure stack

Figure 6: Software flow when a Secure program (e.g. middleware) calls a Non-Secure function (e.g. hardware driver)

The Non-Secure function completes by performing a branch to the FNC_RETURN address; this

automatically triggers the unstacking of the true return address from the Secure stack and returns to

the calling function. The state transition mechanism automatically hides the return address of the

Secure software. Secure software can choose to transfer some of the register values to the Non-

Secure side as parameters, and clears other secure data from the register banks before the function

call.

State transitions can also happen due to exceptions and interrupts. Each interrupt can be configured

as Secure or Non-Secure, as determined by a register which is programmable from the Secure side

only, called the Interrupt Target Non-Secure (NVIC_ITNS) register. There are no restrictions

regarding whether a Non-Secure/Secure interrupt can take place when the processing is running

Non-Secure/Secure code.

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 10 of 16

Handler mode

Thread mode

Handler mode

Thread mode

Secure Non-Secure

Function call/return

Function call / IRQ /
return

IRQ/returnIRQ/return IRQ/returnIRQ/return

Figure 7: Various forms of transition between Secure and Non-Secure worlds in TrustZone for ARMv8-M

If the arriving exception/interrupt has the same state as the current state, then the exception

sequence is almost identical to the current Cortex-M processors, allowing very low interrupt latency.

The main difference occurs when a Non-Secure interrupt takes place, and is accepted by the

processor during execution of Secure code. In this case the processor automatically pushes all

Secure information onto the Secure stack and erases the contents from the register banks, thus

avoiding an information leak.

All existing interrupt handling features such as nesting of interrupts, vectored interrupt handling, and

vector table relocation are supported. TrustZone for ARMv8-M maintains the low interrupt latency

characteristics of the existing Cortex-M processor family, with only Secure to Non-Secure interrupts

incurring a slightly longer interrupt latency due to the need to push all Secure contents to the Secure

stack.

The enhancement of the exception model also works with the lazy stacking of registers in the

floating point unit (FPU). In the Cortex-M4 and Cortex-M7, lazy stacking is used to reduce the

interrupt latency in exception sequences so that stacking of floating point registers is avoided unless

the interrupt handler also uses the FPU. In the ARMv8-M architecture, the same concept is applied

to avoid the stacking of the Secure floating point context. In the case that Secure software does use

the FPU and Non-Secure interrupt handler does not use FPU, the stacking and unstacking of FPU

registers are skipped to provide a faster interrupt handling sequence.

TrustZone for ARMv8-M brings a number of additional registers and components to the processors,

examples include:

• A TrustZone capable ARMv8-M processor has four stack pointers: MSP_S (Secure Main

Stack Pointer) and PSP_S (Secure Process Stack Pointer) for Secure state, and MSP_NS

and PSP_NS for Non-Secure state.

• The processor can optionally implement two SysTick timers (banked), one for each state.

• There can be two separate sets of MPU configuration registers (the number of regions

implement can be different between the two states).

• A number of processor internal registers (e.g. a number of registers in the System Control

Space (SCS) are banked). For example, the Vector Table Offset Register (VTOR) is banked

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 11 of 16

to allow two separated vector tables (one in Secure memory, the other one in Non-Secure

memory) for handling of Secure and Non-Secure exceptions and Interrupts.

As part of TrustZone for ARMv8-M, a stack limit checking feature is also added. This detects the

erroneous case where an application uses more stack than expected, which can potentially cause a

security lapse as well as the possibility of a system failure. For ARMv8-M Mainline, all stack pointers

have corresponding stack limit registers. For ARMv8-M Baseline, Secure stack pointers have

corresponding stack limit registers; Non-Secure programs can use the MPU for stack overflow

prevention.

In order to allow software to determine the security attribute of a memory location, a new instruction

called TT (Test Target) is introduced. For each memory region defined by the SAU and IDAU, there

is an associated region number generated by the SAU or by the IDAU. This region number can be

utilized by software to determine if a contiguous range of memory shares common security

attributes.

The TT instruction returns the security attributes and region number (as well as MPU region

number) from an address value. By using a TT instruction on the start and end addresses of the

memory range, and identifying that both reside in the same region number, software can quickly

determine that the memory range (e.g. data array or data structure) is located entirely in Non-

Secure space (Figure 8). Note: Unlike MPU regions in ARMv6-M and ARMv7-M, SAU/IDAU in

ARMv8-M does not allow overlapping of regions.

Non-Secure memory

Secure memory

Non-Secure memory

Region Y

Region X

TT check results

Starting and ending
addresses are both

secure, and same region
number => Secure

Starting and ending
addresses are both Non-
Secure, and same region
number => Non-Secure

Secure memory

Non-Secure memory

Region Y

Region X

TT check results

Starting and ending
addresses has different
attributes => Crossing

boundary

Starting and ending
addresses are both Non-
Secure, but has different

region number =>
Crossing boundary

Region Z

Data
structure /

array

Data
structure /

array

Figure 8: TT instruction allow software to determine if a data object is placed entirely in a Non-Secure region

Using this mechanism, secure code servicing APIs in to the Secure side can determine if the

memory referenced by a pointer from Non-Secure software has the appropriate security attribute for

the API. This prevents Non-Secure software from using APIs in Secure software to read out or

corrupt Secure information.

Many additional security checking mechanisms are added as part of the ARMv8-M architecture. It is

impossible to cover all details here, additional documents including the ARMv8-M architecture

specification will be released in the near future.

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 12 of 16

System Design with TrustZone for ARMv8-M
In a TrustZone capable ARMv8-M microcontroller or SoC, the processor is only part of the story.

Additional hardware enhancements are needed to ensure Security integrity at a system level. In

order to allow security awareness at the system level, ARM has released the AMBA® 5 AHB5

specification, which is an enhancement of the AHB Lite specification from AMBA 3.0. The AHB5

specification adds the HNONSEC signal to indicate if a bus transaction is Secure (HNONSEC=0) or

Non-Secure (HNONSEC=1). In addition, AHB5 contains the following enhancements:

• Adding exclusive access sideband signals (HEXCL and HEXOKAY) and HMASTER.

• Expanding the HPROT signal to 7 bits to include additional memory attributes

• Adding User signals for system specific sideband signal requirements (e.g. for error

correction code)

• A bus slave can have multiple select bits (HSEL) to allow multiple views of a bus slave when

accessed from different address ranges

• Adding a number of properties to define bus components capabilities to allow ESL

(Electronic System Level) design tools to handle different components correctly

• A range of clarifications.

The inclusion of HNONSEC allows a TrustZone capable ARMv8-M system to work together with

TrustZone based systems containing Cortex-A processors using an AXI interconnect (which uses

AxPROT[1] as security state indication).

Within a system level design, additional components are needed, for example, to allow memory

blocks to be partitioned into Secure memory regions and Non-Secure memory regions. Similarly,

access permission control logic is needed to manage access permission of peripherals. Legacy

peripherals and legacy bus masters can be reused with appropriate bus wrapper logic.

Usage of TrustZone technology in ARMv8-M processors
TrustZone for ARMv8-M can be utilized in a number of ways:

Firmware protection – microcontroller vendors are increasingly adding firmware to their products

to enhance their overall value and to make it easier for their customers to create applications. This

firmware can include valuable IP which needs to be protected from reverse engineering or IP theft.

TrustZone technology enables such protection by allowing chip vendors to put their firmware in

protected, Secure memory space, while still allowing users to use the firmware via APIs.

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 13 of 16

Protected firmware
in Secure memory

TrustZone enabled Microcontroller

Communication
Protocol stack

Software library

User application

Figure 9: TrustZone technology for firmware IP protection

Microcontroller vendors can also create microcontrollers with blank flash in protected memory

space, and provide a means to allow third parties to integrate firmware in protected Secure memory

space. The device can then be sold to system developers for end user application development with

the firmware protected.

Secure memory

TrustZone enabled Microcontroller

Blank flash

Protected firmware
in Secure memory

TrustZone enabled Microcontroller

Software library
Blank flashBlank flash

Microcontroller from chip vendors
OEMs or middleware vendors programmed

devices with firmware

Protected firmware
in Secure memory

TrustZone enabled Microcontroller

Software library
User Application

System developers add their application
codes

Figure 10: TrustZone technology enables a secure way to distribute firmware/middleware

Security management in IoT devices – Many IoT devices need to handle security sensitive

information such as user information and security keys. TrustZone technology allows this

information and associated firmware (that can have direct access to this data) to be stored in

protected Secure memory space. TrustZone technology enables the application code running in

Non-Secure mode access to the Secure information via predefined APIs only and (if provided in the

Secure software) via an authentication process.

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 14 of 16

Security keys and certificates
in Secure memory

TrustZone enabled Microcontroller

Security
management

Protected security
keys and

certificates

User application

User
Data

Figure 11: TrustZone technology for protection of sensitive data

Root of Trust implementation – Connected devices with authentication requirements require a

root of trust in the system architecture. This is particularly important for devices that can be updated

over the air. In a system with TrustZone technology, code providing firmware-update support and

associated authentication can be placed in secure space and hence protected. Even if a device is

compromised at the application level it cannot be wiped out and replaced with spurious firmware.

Components for implementing “Root of Trust” in
Secure memory

TrustZone enabled Microcontroller

Security keys
& certificates

User application

User Data
Firmware

update

TRNG

Crypto
accelerator

Security management,
authenication

Secure boot Protected firmware

Figure 12: Use of TrustZone technology to implement “Root of Trust”

Sandboxing for devices with certified software – Many ASSPs, such as a Bluetooth® chipset,

contain preloaded software while also allowing developers to add their own software components.

Using TrustZone technology, the preloaded firmware can be placed in the Secure side and its

behavior prevented from being altered by applications running on the Non-Secure side. This helps

in ensuring that certified firmware remains in its certified state. In addition placing the firmware in the

Secure side of ARMv8-M architecture based processor helps protect it from being reverse

engineered.

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 15 of 16

TrustZone enabled Microcontroller

Execution environment protected in Secure state

User applications running in
sandboxed environment

Driver
API

HWApps
API

OS kernelSoftware library

Figure 13: TrustZone technology for creating sand-boxed execution environments

Consolidation of multiple helper processors in complex SoCs – Complex application processor

SoCs often contain Cortex-M processors for off-load or for managing system functions. Sometimes

multiple Cortex-M processors are used to isolate secure software from non-secure software.

TrustZone technology makes it possible to merge secure and non-secure processors to reduce

system cost and software complexity.

Software migration and software enablement
ARMv8-M and TrustZone technology affects Cortex-M development tools and middleware in a

number of ways. Changes include enhancements in instruction set support and in the programmer’s

model of debug support components. In addition, an RTOS will require changes to take advantage

of the TrustZone security extension. A number of activities to support the Cortex-M ecosystem have

already started in ARM. These include:

- Update of ARM compiler and gcc to support the instruction set enhancements

- Update of ARM C Language Extension (ACLE) to support software development in

TrustZone technology

- Update of CMSIS-CORE to support future generation processors

- Update of CMSIS-RTOS API specification to support RTOS operations in microcontrollers

with TrustZone for ARMv8-M

- ARM mbed™ OS enhancement

ARM is in the process of informing third party ecosystem partners about ARMv8-M and TrustZone

technology, and some partners have already started developing their next generation products to

support ARMv8-M. If you are developing software development tools or middleware for ARM

Cortex-M microcontrollers and would like to start working on enhancing your products to support

ARMv8-M, please contact the ARM ecosystem partner management team: www.arm.com/contact-

us/).

http://www.arm.com/contact-us/
http://www.arm.com/contact-us/

Copyright © 2015 ARM Limited. All rights reserved.
The ARM logo is a registered trademark of ARM Ltd.

All other trademarks are the property of their respective owners and are acknowledged

Page 16 of 16

Summary
The next generation of ARM Cortex-M processors will be based on the ARMv8-M architecture. The

new architecture is upward compatible with existing ARMv6-M and ARMv7-M architectures. The

new architecture contains a range of enhancements including:

- Additions to the instruction set

- Protected Memory System Architecture (PMSAv8)

- TrustZone security extensions

- Debug support enhancements

The TrustZone security extension adds Secure and Non-Secure states to the processor’s operation.

It allows multiple security domains to be established within a single processor system and can be

utilized in many different ways.

Updates to tools, middleware and RTOS are already underway and ARM welcomes ecosystem

partners to start working on ARMv8-M. Please contact the ARM ecosystem partner management

team for more information.

