A flexible, extensible software framework for model compression based on the LC algorithm

Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán
Department of CSE, University of California, Merced
http://eecs.ucmerced.edu

The code is available at:
https://github.com/UCMerced-ML/LC-model-compression
The fundamental problem of model compression: what to choose?

Images are from the slides of Miguel Á. Carreira-Perpiñán
In principle, we want to explore all possible combinations, and select the best. But:

- Many compression schemes \(\Rightarrow\) many algorithms
- How to maintain a library of many compressions?
- How to make it user friendly?
 - many algorithms \(\Rightarrow\) many failure points
- How to make it extensible and easily maintainable?

We propose a software based on the Learning-Compression (LC) algorithm:

- single algorithm—many compressions
- extensible, modular, and fast
- impressive compression results
- open source: BSD 3-clause license
The LC algorithm: formulation

Given a network with weights w and loss L:

$$\min_{w, \Theta} L(w) \quad \text{s.t.} \quad w = \Delta(\Theta)$$

The compression details are abstracted in $\Delta(\Theta)$:

- e.g., low-rank: $\Delta(\Theta) = UV^T$ where $\Theta = \{U, V\}$

![Diagram showing the w-space (uncompressed models) and the feasible models C (decompressible by Δ). The optimal compressed model w^* is marked. The decompression mapping is illustrated by $\Delta: \Theta \rightarrow w \in \mathbb{R}^P$.](figure from the slides of Miguel Á. Carreira-Perpiñán)
The problem (1) can be solved by alternation of these two steps (while driving \(\mu \to \infty \)), which form the basis of our software:

- **Learning (L) step:**
 \[
 \min_w L(w) + \frac{\mu}{2} \| w - \Delta(\Theta) \|^2
 \]

 - This is a regular training of the model, but with a quadratic regularization term.
 - When you train a network, you already have the L step.

- **Compression (C) step:**
 \[
 \min_{\Theta} \| w - \Delta(\Theta) \|^2
 \]

 - Independent of the loss, neural network structure, and the dataset.
 - We provide a library of different C steps for many different compressions.
The library of implemented compressions

<table>
<thead>
<tr>
<th>Type</th>
<th>Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantization</td>
<td>Adaptive Quantization into ({c_1, c_2, \ldots c_K})</td>
</tr>
<tr>
<td></td>
<td>Binarization into ({-1, 1}) and ({-c, c})</td>
</tr>
<tr>
<td></td>
<td>Ternarization into ({-c, 0, c})</td>
</tr>
<tr>
<td></td>
<td>(\ell_0)-constraint (s.t., (|w|_0 \leq \kappa))</td>
</tr>
<tr>
<td></td>
<td>(\ell_1)-constraint (s.t., (|w|_0 \leq \kappa))</td>
</tr>
<tr>
<td></td>
<td>(\ell_0)-penalty ((\alpha |w|_0))</td>
</tr>
<tr>
<td></td>
<td>(\ell_1)-penalty ((\alpha |w|_1))</td>
</tr>
<tr>
<td>Pruning</td>
<td>Low-rank compression to a given rank</td>
</tr>
<tr>
<td></td>
<td>Low-rank with automatic rank selection for FLOPs reduction</td>
</tr>
<tr>
<td></td>
<td>Low-rank with automatic rank selection for storage compression</td>
</tr>
<tr>
<td>Low-rank</td>
<td>Quantization + Pruning</td>
</tr>
<tr>
<td></td>
<td>Quantization + Low-rank</td>
</tr>
<tr>
<td></td>
<td>Pruning + Low-rank</td>
</tr>
<tr>
<td></td>
<td>Quantization + Pruning + Low-rank</td>
</tr>
<tr>
<td>Additive Combinations</td>
<td></td>
</tr>
</tbody>
</table>
Easy exploration of compressions

Having an L-step implementation *(you only need one)*, definition of compression is very simple:

quantize each layer with separate codebooks

```
compression_tasks = {
    Param(l1.weight): (AsVector, AdaptiveQuantization(k=2)),
    Param(l2.weight): (AsVector, AdaptiveQuantization(k=2)),
    Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))
}
```

prune all but 5%

```
compression_tasks = {
    Param([l1.weight, l2.weight, l3.weights]):
    (AsVector, ConstraintL0Pruning(kappa=13310))  # 13310 = 5%
}
```

prune first layer, low-rank to second, quantize third

```
compression_tasks = {
    Param(l1.weight): (AsVector, ConstraintL0Pruning(kappa=5000)),
    Param(l2.weight): (AsIs, LowRank(target_rank=10))
    Param(l3.weight): (AsVector, AdaptiveQuantization(k=2))
}
```
Our framework achieves competitive results in many compression schemes. For example, using our code for rank-selection, we can achieve considerable speed-up on AlexNet:

<table>
<thead>
<tr>
<th>Model</th>
<th>GPU of Jetson Nano time, ms</th>
<th>speed-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlexNet</td>
<td>23.36</td>
<td>1.00</td>
</tr>
<tr>
<td>L_1</td>
<td>11.59</td>
<td>2.01</td>
</tr>
<tr>
<td>L_2</td>
<td>8.88</td>
<td>2.63</td>
</tr>
<tr>
<td>L_3</td>
<td>7.11</td>
<td>3.29</td>
</tr>
</tbody>
</table>

\(\rho_{\text{FLOPs}} \) — reduction in FLOPs. See Idelbayev and Carreira-Perpiñán [9] for full details.
Example: Additive compressions to achieve smallest AlexNet-s

The codebase allows easy exploration of new compression mechanisms. For example, we can further compress low-rank AlexNet models to target storage:

<table>
<thead>
<tr>
<th>Model</th>
<th>top-1 size, MB</th>
<th>MFLOPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffe-AlexNet Jia et al. [1]</td>
<td>42.70</td>
<td>243.5</td>
</tr>
<tr>
<td>L₁ → Q (1-bit) + P (0.25M)</td>
<td>41.56</td>
<td>3.7</td>
</tr>
<tr>
<td>L₂ → Q (1-bit) + P (0.25M)</td>
<td>41.91</td>
<td>2.8</td>
</tr>
<tr>
<td>L₃ → Q (1-bit) + P (0.25M)</td>
<td>42.85</td>
<td>2.2</td>
</tr>
<tr>
<td>AlexNet-QNN of Wu et al. [10]</td>
<td>44.24</td>
<td>13.0</td>
</tr>
<tr>
<td>P→₁Q of Han et al. [11]</td>
<td>42.78</td>
<td>6.9</td>
</tr>
<tr>
<td>P→₂Q of Choi et al. [12]</td>
<td>43.80</td>
<td>5.9</td>
</tr>
<tr>
<td>P→₃Q of Tung and Mori [13]</td>
<td>42.10</td>
<td>4.8</td>
</tr>
<tr>
<td>P→₄Q of Yang et al. [14]</td>
<td>42.48</td>
<td>4.7</td>
</tr>
<tr>
<td>P→₅Q of Yang et al. [14]</td>
<td>43.40</td>
<td>3.1</td>
</tr>
<tr>
<td>Filter pruning of Li et al. [7]</td>
<td>43.17</td>
<td>232.0</td>
</tr>
</tbody>
</table>

![Graph showing top-1 test error (%) and storage ratio ρₛ for various compression schemes](image)
Source code and library features

Our code is written in Python using PyTorch, and open source under BSD 3-clause license:

https://github.com/UCMerced-ML/LC-model-compression

Using the provided code, you will be able to:

• replicate all reported experiments
• compress your own models with many available compression schemes

Our library is:

• modular and easily extensible
• only requires the L-step implementation: the regular learning of the model (using SGD)
• based on solid optimization principles
• single algorithm—many compressions
• time proven (development since 2017), with many publications [9, 15, 16, 17, 18, 19, 20, 21]
References

