FAST VISUAL TARGET IDENTIFICATION FOR LOW-COST BCI Speller

DOKYUN KIM¹, WOOSEOK BYUN², JOONG WOO AHN³

YUNSEO KU², HEE CHAN KIM³, AND JI-HOON KIM⁴

¹SeoulTech

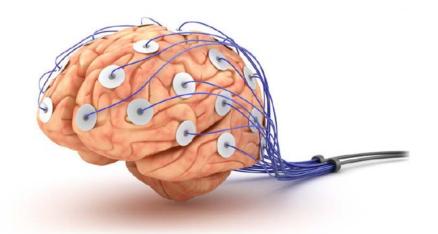
³Seoul National University

²Chungnam National University

⁴Ewha Womans University

OUTLINE

- What is the brain-computer interface?
- Research goal
- Previously developed wearable BCI device
- Proposed target identification algorithm
- Experimental results
- Further work make our own hardware
- Conclusion



• Brain-Computer Interface (BCI) - emerging communication channel for humans

Jan Scheuermann, DARPA

Courtesy Georgia Tech BrainLAB

Samsung

Lyon Neuroscience Research Center, 2012

• Brain-Computer Interface (BCI) - emerging communication channel for humans

Jan Scheuermann, DARPA

Courtesy Georgia Tech BrainLAB

Samsung

Lyon Neuroscience Research Center, 2012

Invasive

Non-invasive

• Brain-Computer Interface (BCI) - emerging communication channel for humans

Jan Scheuermann, DARPA

Courtesy Georgia Tech BrainLAB

Samsung

Lyon Neuroscience Research Center, 2012

BCI Speller

• Brain-Computer Interface (BCI) - emerging communication channel for humans



Physicist, Hawking

Lyon Neuroscience Research Center

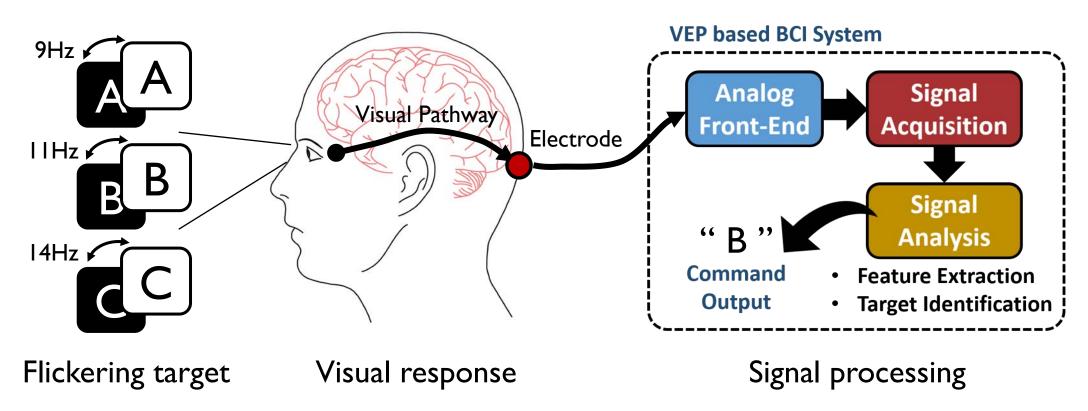
BCI Speller

• Can help patients with paralysis communicate with other people (stroke, spinal cord injury, ...)

- Using non-invasive electroencephalogram (EEG)
 - → non-invasiveness, simple operation

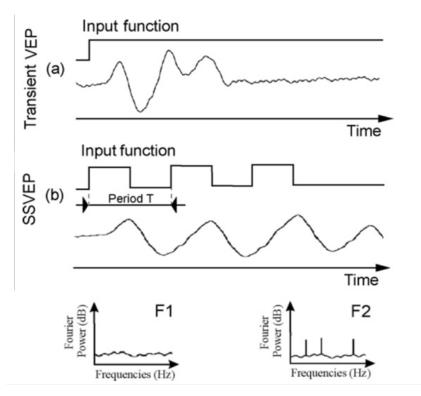
STEADY-STATE VISUAL EVOKED POTENTIAL

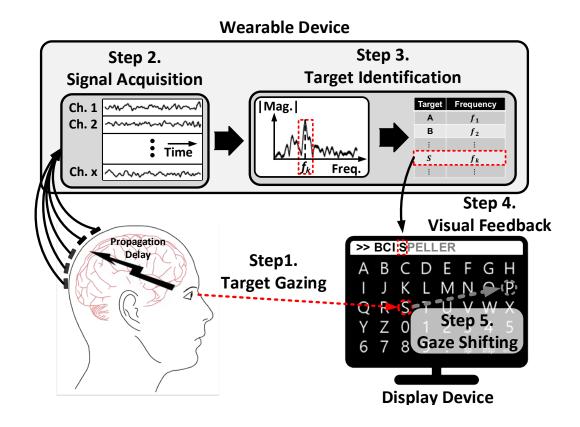
- Information transfer through visual evoked potentials (VEPs)
 - SSVEP: EEG response to flickering visual stimulation at a specific frequency



VISUAL TARGET IDENTIFICATION IN BCI SPELLER

- Information transfer through visual evoked potentials (VEPs)
 - SSVEP: EEG response to flickering visual stimulation at a specific frequency





Francois-Benoit Vialatte, 2009

RESEARCH GOAL

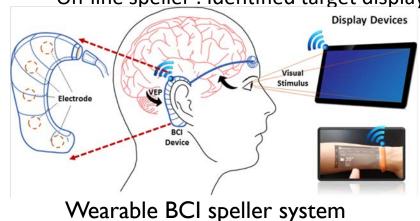
Previous BCI speller system

- Attaching many electrodes on the head
 - Discomfort to wear
 - Long preparation/setup time
- EEG signal processing in PC
 - Need powerful computing resource

Previous BCI speller system

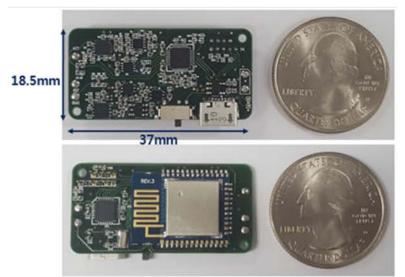
Goal: Wearable BCI speller system

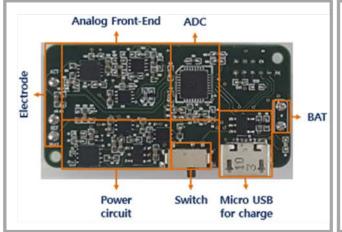
- BCI device with better wearability
 - Support on-device EEG processing
 - Based on Low-power MCU platform
 - Display device with Bluetooth
 - Target character display : visual stimulus
 - On-line speller : Identified target display

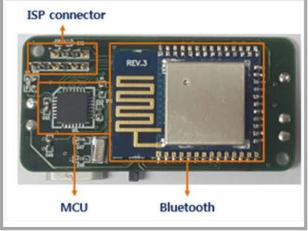


WEARABLE BCI DEVICE PROTOTYPE

- Behind-the-ear type device
 - Single-channel EEG + Bluetooth 4.0
 - Target identification software on host PC (EEG data transfer through Bluetooth)
 - 24-bit resolution ADC chip (for performance evaluation)



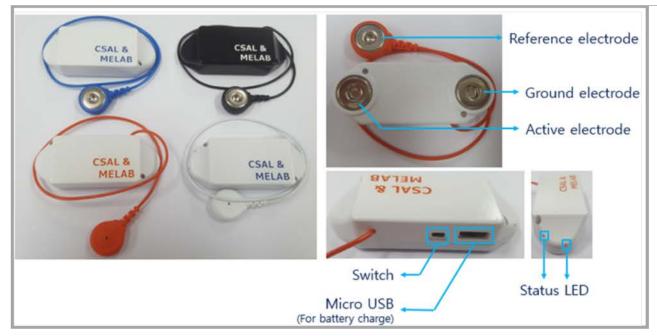




Co-work with Seoul National University (SNU)

WEARABLE BCI DEVICE PROTOTYPE

- Behind-the-ear type device
 - Single-channel EEG + Bluetooth 4.0
 - Target identification software on host PC (EEG data transfer through Bluetooth)
 - 24-bit resolution ADC chip (for performance evaluation)



IRB (Institutional Review Board) approved

COMPARISON TO COMMERCIAL DEVICES

- Small size & low power
 - Comfortable
 - Long battery life
- High performance
 - Low noise
 - High resolution
- But...
 - Requires powerful computing PC

	This Work	Neuroscan	EMOTIV EPOC	Neurosync
	CSAL & MELAB			
Dimension (mm)	54 x 20 x 10	-	¥	63 x 40 x 25
Weight (g)	14.3	>-	104.3	43
Number of Ch.	1	64-512	14	1
Sampling rate (SPS)	250 / 500	Up to 20,000	127	
ADC reference (V)	±2.42	Adjustable	N/A	
Amplification (V/V)	59,400	Adjustable	N/A	
Dynamic range	±40.74	Adjustable	8,400	NI/A
Noise level (µVrms)	0.11	0.5	about 1	N/A
Resolution	24bit / 48.4nV	24bit / 3nV	14bit / 0.51μV	
Bandwidth (Hz)	1-35	DC-3,500	0.2-45	
Communication	Bluetooth 4.0	USB	2.4GHz	
Power	Li-polymer	Wall names	Li-polymer	AAA battery
Power consumption	19 hour	Wall power	12 hour	N/A

IMPROVEMENT DIRECTION OF PROTOTYPE DEVICE

Not Enough SNR: Poor SSVEP quality at behind-the-ear position

Not Enough Computing Power: Requires external computing device

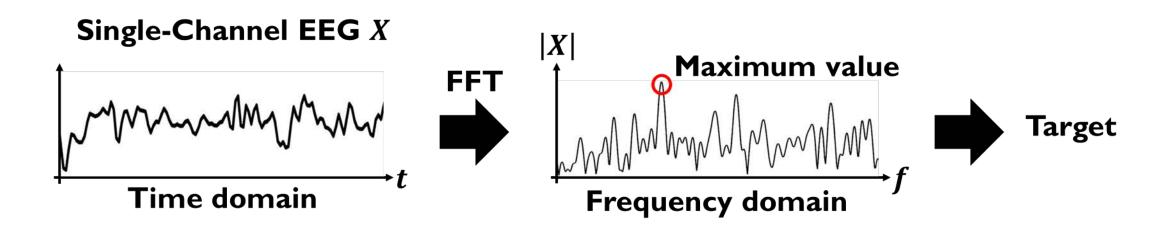
Not Enough Communication Speed

IMPROVEMENT DIRECTION OF PROTOTYPE DEVICE

- Not Enough SNR: Poor SSVEP quality at behind-the-ear position
 - Move the electrode to back of the head (occipital region, Oz)
- Not Enough Computing Power: Requires external computing device
 - Propose the target identification algorithm for low-cost MCU and small memory
 - Maintain the BCI speller performance with negligible accuracy loss
- Not Enough Communication Speed
 - Reduce the signal processing time especially the timing dependent procedures

TARGET IDENTIFICATION ALGORITHMS

- PSDA (Power Spectral Density Analysis)
 - For single-channel SSVEP target identification
 - Simple operation: FFT & find maximum index
 - Weak performance for low SNR (signal-to-noise) SSVEP signal



TARGET IDENTIFICATION ALGORITHMS

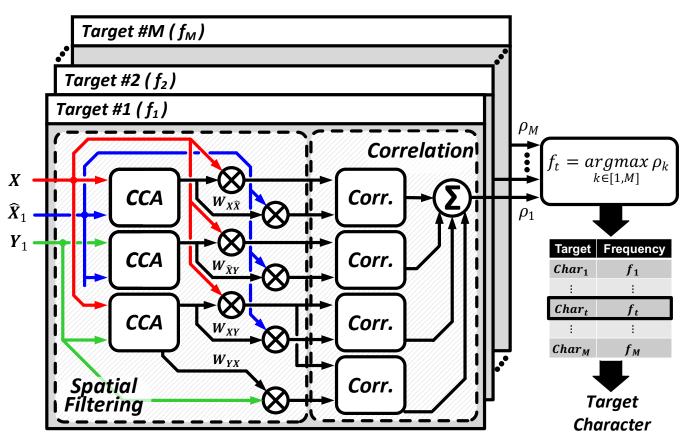
- Standard-CCA (Canonical Correlation Analysis)*
 - ullet Correlation between EEG signal $oldsymbol{X}$ and reference sinusoidal signal $oldsymbol{Y}$ for each frequency
 - Should be computed for each target frequency \rightarrow Maximum correlation: target

Canonical Correlation Analysis (CCA) Multichannel EEG X $sin(2\pi N_h f_k t)$ W_X : Input Signal Covariance Matrix ⊗: Multiplication $C_{aa}^{-1} \bigotimes C_{ab} \bigotimes C_{bb}$ **Ordinary** Maximum Reference Signal Y_k Correlation Canonical W_{v} Eiaenvalue Correlation $oldsymbol{W}_{AB}$: Weight of A $y = W_Y^T Y$ $oldsymbol{W}_{BA}$: Weight of B

 $sin(2\pi f_k t)$ $cos(2\pi f_k t)$

TARGET IDENTIFICATION ALGORITHMS

Combination-CCA (Comb-CCA)*



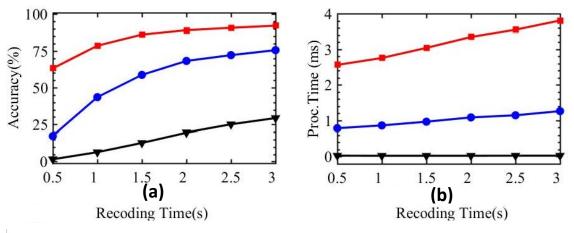
- User-specific target identification
 using training data → more accurate!
- Uses three datasets
 - X: Input SSVEP signal set
 - \widehat{X} :Training signal set (average of SSVEP)
 - Y: Reference sinusoidal signal set
- 3 CCA calculations & 4 correlations
 - → huge computational complexity

TARGET IDENTIFICATION COMPARISON

 Performance evaluation in terms of accuracy, processing time, and ITR (information transfer rate)

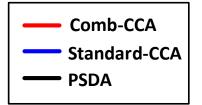
Algorithm	Performance	Complexity
Comb-CCA	High	High
Standard-CCA	Medium	Medium
PSDA	Low	Low

 Comb-CCA was chosen for the baseline algorithm in this research



$$ITR = \left(\log_2 N_f + P \log_2 P + (1 - P) \log_2 \left[\frac{1 - P}{N_f - 1}\right]\right) \times \left(\frac{60}{T}\right)$$

- **P**: classification accuracy
- T: average time for selection
- N_f : number of targets



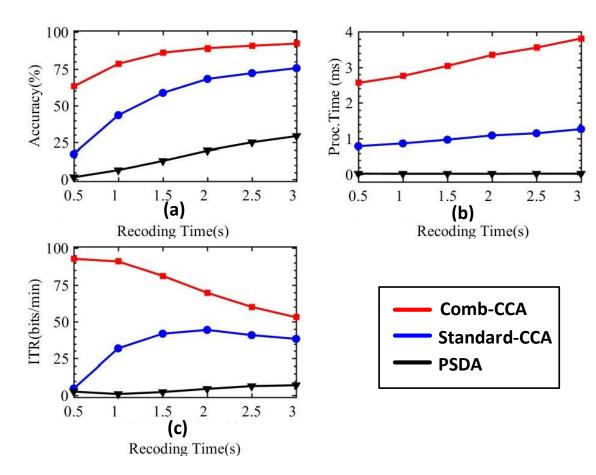
Performance comparison of target identification algorithms
(a) Accuracy, (b) Processing time (in PC), (c) ITR (Information Transfer Rate)

TARGET IDENTIFICATION COMPARISON

 Performance evaluation in terms of accuracy, processing time, and ITR (information transfer rate)

Algorithm	Performance	Complexity
Comb-CCA	High	High
Standard-CCA	Medium	Medium
PSDA	Low	Low

 Comb-CCA was chosen for the baseline algorithm in this research



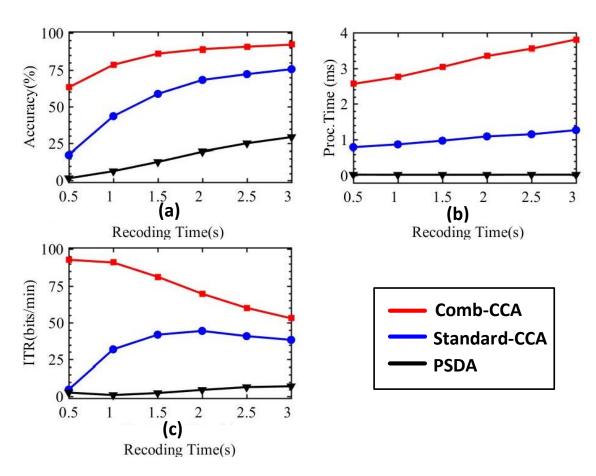
Performance comparison of target identification algorithms
(a) Accuracy, (b) Processing time (in PC), (c) ITR (Information Transfer Rate)

TARGET IDENTIFICATION COMPARISON

 Performance evaluation in terms of accuracy, processing time, and ITR (information transfer rate)

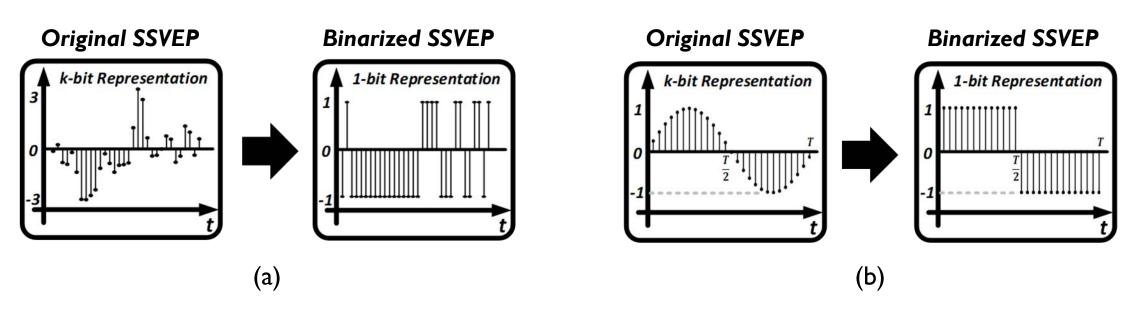
Algorithm	Performance	Complexity
Comb-CCA	High	High
Standard-CCA	Medium	Medium
PSDA	Low	Low

 Comb-CCA was chosen for the baseline algorithm in this research



Performance comparison of target identification algorithms
(a) Accuracy, (b) Processing time (in PC), (c) ITR (Information Transfer Rate)

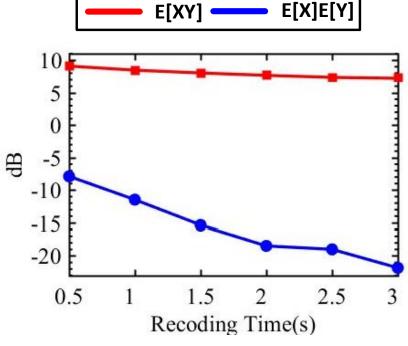
- Optimization method #1: Signal Binarization
 - Comb-CCA with multi-bit EEG & reference signal → High computational complexity / memory
 - Comb-CCA with signal binarization → Low computational complexity w/ negligible accuracy loss
 Low memory requirement



Proposed signal binarization concept for (a) EEG signal, (b) Reference sinusoidal signal

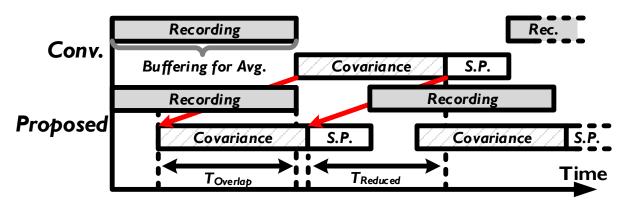
- Optimization method #2: On-the-fly Covariance
 - Cov(X, Y) = E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y]

- Optimization method #2: On-the-fly Covariance
 - $Cov(X,Y) = E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y] \approx E[XY]$
 - If $E[XY] \gg E[X]E[Y]$ then E[X]E[Y] can be ignored
 - In our application, E[XY] more bigger than E[X]E[Y]

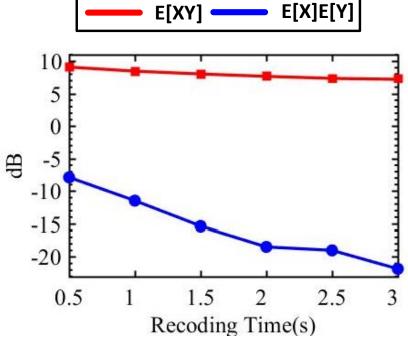


Comparison of E[XY] and E[X]E[Y]

- Optimization method #2: On-the-fly Covariance
 - $Cov(X,Y) = E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y] \approx E[XY]$
 - If $E[XY] \gg E[X]E[Y]$ then E[X]E[Y] can be ignored
 - In our application, E[XY] more bigger than E[X]E[Y]
 - Covariance matrix calculation can be performed simultaneously with SSVEP recording



Advantage from On-the-fly Covariance Calculation

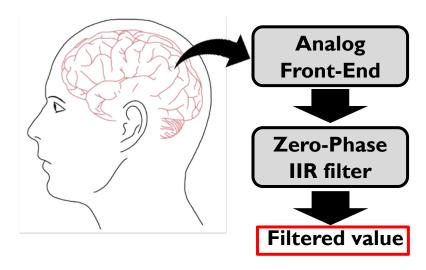


Comparison of E[XY] and E[X]E[Y]

EXPERIMENTAL ENVIRONMENTS

- Low-power MCU platform
 - STM32FI03ZET6 ARM MCU
 - ARM Cortex-M3 (Operating Frequency: 72MHz)
 - 512KB flash memory, 64KB SRAM
- Dataset Description *
 - EEG acquisition using Biosemi's ActiveTwo
 - ADC: 24-bit resolution
 - Sampling Frequency: 256Hz
 - Number of channel: 8 channels (We used Oz)
 - Recording Time: 4s
 - # of Target, # of subjects : 12 targets, 10 subjects

STM32F103ZET6 board

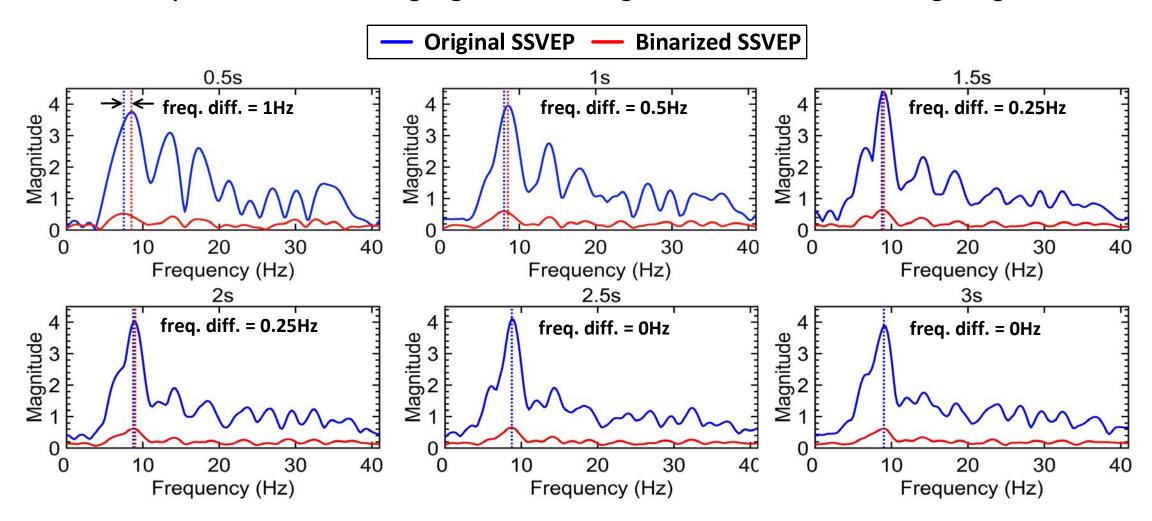


Pre-processing before writing the data file

• Subject #4

• Target: 9.25Hz

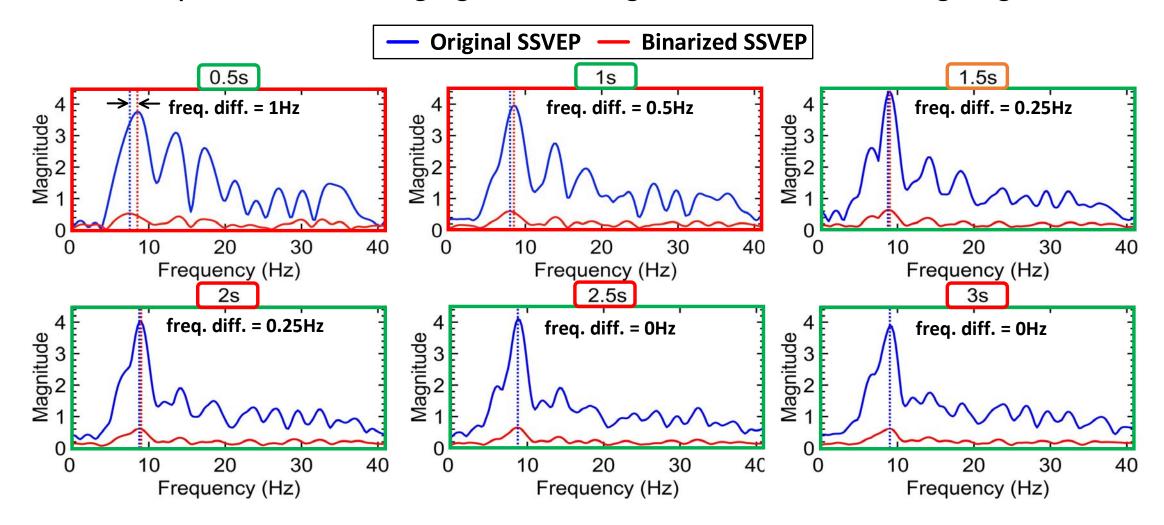
• Power spectrum of training signal according to the SSVEP recording length



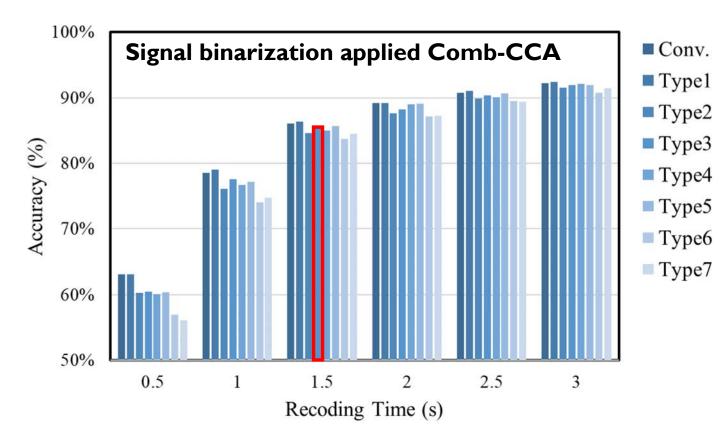
• Subject #4

• Target: 9.25Hz

• Power spectrum of training signal according to the SSVEP recording length



• Accuracy performance according to the combination of binarization application



Type3 : High accuracy with small memory requirement
--

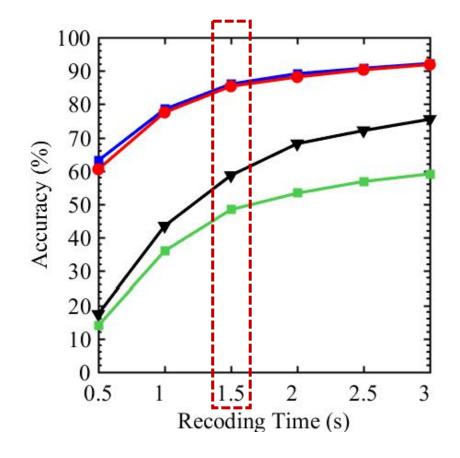
-- Training & Reference : pre-stored data

Туре	Measured EEG	Training EEG	Reference Sinusoidal
Conv.	X	X	X
Туре І	X	X	0
Type2	X	0	X
Туре3	X	0	0
Type4	0	X	X
Type5	0	X	0
Туре6	0	0	X
Туре7	0	0	0

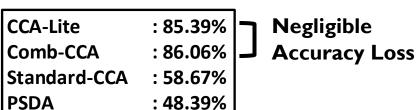
O: Signal binarization was applied

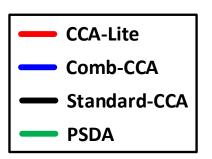
X: Signal binarization was not applied

- Accuracy performance for various target identification algorithms
 - CCA-Lite: Comb-CCA + Signal Binarization (for Train & Ref.) + on-the-fly Covariance

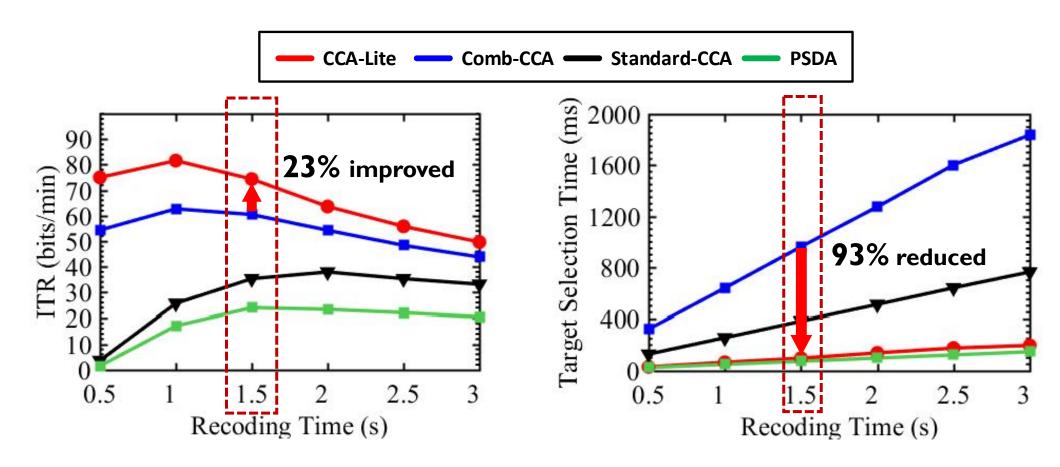


Accuracy at 1.5s

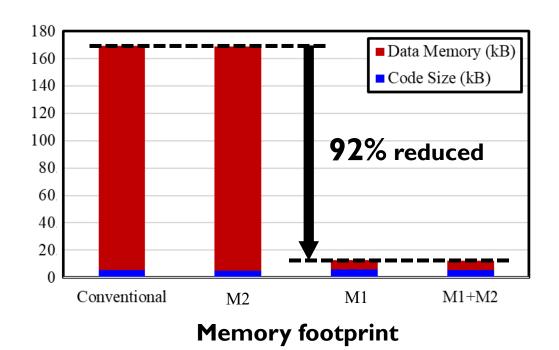




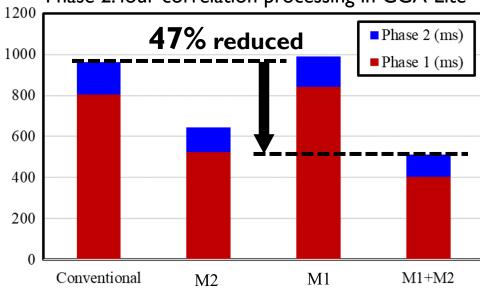
- Performance of target selection time & ITR (Information Transfer Rate)
 - Tested on Cortex-M3 based STM board (operating frequency: 72MHz)



- CCA-Lite software performance evaluation on Cortex-M3
 - MI: Signal binarization applied Comb-CCA / M2: on-the-fly covariance applied Comb-CCA
 - MI+M2: proposed CCA-Lite

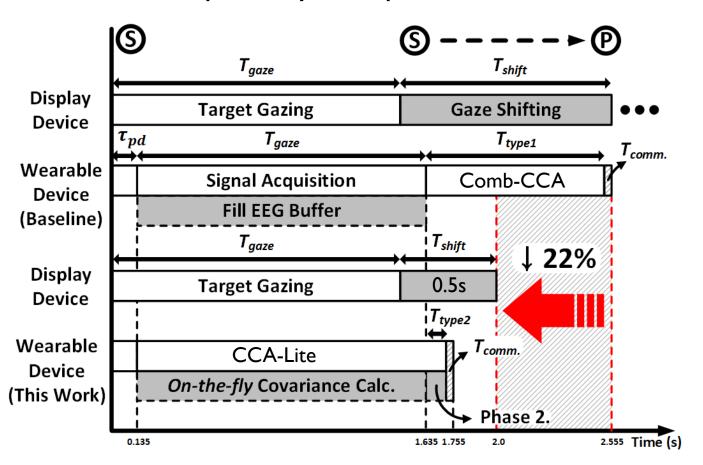


Phase I: three CCA processing in CCA-Lite
Phase 2: four correlation processing in CCA-Lite



Pure signal processing time on Cortex-M3 for single target identification

Overall BCI speller system performance in terms of communication speed



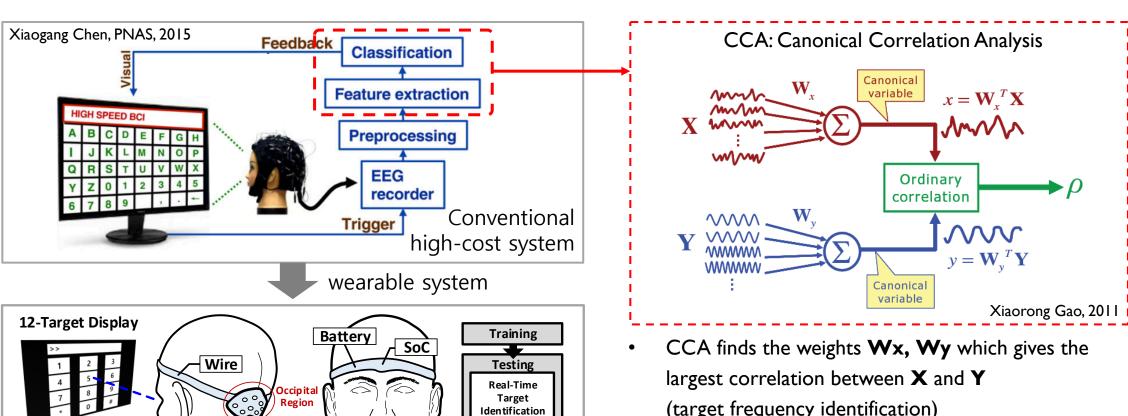
- Fixed target gazing time: 1.5s
- Minimum gaze shift time: 0.5s ^{1,2)}

- Single target identification time
 - 22% reduced!
 - Guaranteed gaze shift time 0.5s
 (signal processing will be done before the end of gaze shift time)
- 1) X. Chen et al, "High-speed spelling with a noninvasive brain-computer interface", PNAS, 2015
- 2) M. Nakanishi et al, "Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis", IEEE TBME, 2018

REUSABLE MATRIX ARITHMETIC ARCHITECTURE

SSVEP-based Target Identification SoC with Highly Reusable 8x8 QRD

8 electrodes

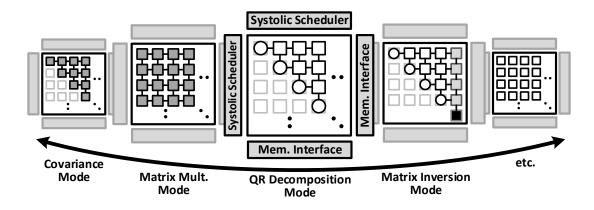


Wireless Comm.

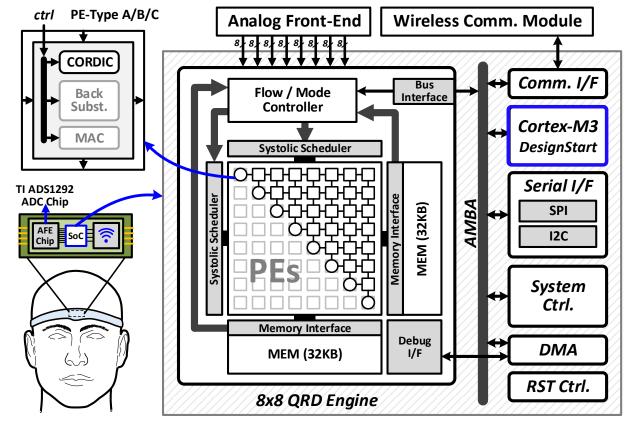
- (target frequency identification)
- We use CCA-Lite consisting of three CCAs.
 - Requires QRD, Inverse, Covariance, Mult. . . .

REUSABLE MATRIX ARITHMETIC ARCHITECTURE

- SSVEP-based Target Identification SoC with Highly Reusable 8x8 QRD
 - Systolic architecture based QR decomposition engine



- Same hardware, different operations → high reusability (covariance, mult, QRD, inversion, ...)
- "High throughput, reduced area & memory access, reduced power consumption" compared to same operations
- Target frequency identification on the low-cost edge devices.
- System implementation w/ AFE & Wireless Comm.



CONCLUSION

- Research for patients with paralysis
 - Low-cost wearable BCI system
- Propose CCA-Lite for low-complexity target identification
 - Target selection time reduction: **93**%
 - ITR (Information Transfer Rate) improvement: 23%
 - Total performance improvement (for single target identification time): 22%
- Further work support multi-ch EEG processing for better accuracy
 - SoC (System-on-chip) design with AFE (Analog Frontend) + dedicated hardware accelerator

THANK YOU

Any questions or comments - ihoonkim@ewha.ac.kr