FAST VISUAL TARGET IDENTIFICATION
FOR LOW-COST BCI SPELLER

Dokyun Kim¹, Wooseok Byun², Joong Woo Ahn³
Yunseo Ku², Hee Chan Kim³, and Ji-Hoon Kim⁴

¹SeoulTech ³Seoul National University
²Chungnam National University ⁴Ewha Womans University
OUTLINE

• What is the brain-computer interface?
• Research goal
• Previously developed wearable BCI device
• Proposed target identification algorithm
• Experimental results
• Further work – make our own hardware
• Conclusion
Brain-Computer Interface

- Brain-Computer Interface (BCI) - emerging communication channel for humans
BRAIN-COMPUTER INTERFACE

• Brain-Computer Interface (BCI) - emerging communication channel for humans

Invasive

Jan Scheuermann, DARPA

Non-invasive

Courtesy Georgia Tech BrainLAB

Samsung

Lyon Neuroscience Research Center, 2012
Brain-Computer Interface (BCI) - emerging communication channel for humans

Jan Scheuermann, DARPA

Courtesy Georgia Tech BrainLAB

Samsung

Lyon Neuroscience Research Center, 2012

BCI Speller
Brain-Computer Interface (BCI) - emerging communication channel for humans

• Can help patients with paralysis communicate with other people (stroke, spinal cord injury, …)

• Using non-invasive electroencephalogram (EEG) → non-invasiveness, simple operation
Steady-State Visual Evoked Potential

- Information transfer through visual evoked potentials (VEPs)
 - SSVEP: EEG response to flickering visual stimulation at a specific frequency

![Diagram](image_url)

- Flickering target
- Visual response
- Signal processing

VEP based BCI System

- Analog Front-End
- Signal Acquisition
- Signal Analysis
 - Feature Extraction
 - Target Identification

- Command Output

Note: This image includes a diagram illustrating the process of a VEP-based BCI system, showing the visual pathway, electrode placement, and signal processing steps.
VISUAL TARGET IDENTIFICATION IN BCI SPELLER

- Information transfer through visual evoked potentials (VEPs)
 - SSVEP: EEG response to flickering visual stimulation at a specific frequency

Francois-Benoit Vialatte, 2009
RESEARCH GOAL

Previous BCI speller system

- Attaching many electrodes on the head
- Discomfort to wear
- Long preparation/setup time
- EEG signal processing in PC
- Need powerful computing resource

![Previous BCI speller system](image1)

Goal: Wearable BCI speller system

- BCI device with better wearability
 - Support on-device EEG processing
 - Based on Low-power MCU platform
 - Display device with [Bluetooth®](#)
 - Target character display: visual stimulus
 - On-line speller: Identified target display

![Wearable BCI speller system](image2)
WEARABLE BCI DEVICE PROTOTYPE

• Behind-the-ear type device
 • Single-channel EEG + Bluetooth 4.0
 • Target identification software on host PC (EEG data transfer through Bluetooth)
 • 24-bit resolution ADC chip (for performance evaluation)

Co-work with Seoul National University (SNU)
WEARABLE BCI DEVICE PROTOTYPE

• Behind-the-ear type device
 • Single-channel EEG + Bluetooth 4.0
 • Target identification software on host PC (EEG data transfer through Bluetooth)
 • 24-bit resolution ADC chip (for performance evaluation)

IRB (Institutional Review Board) approved
COMPARISON TO COMMERCIAL DEVICES

- Small size & low power
 - Comfortable
 - Long battery life

- High performance
 - Low noise
 - High resolution

- But…
 - Requires powerful computing PC

<table>
<thead>
<tr>
<th></th>
<th>This Work</th>
<th>Neuroscan</th>
<th>EMOTIV EPOC</th>
<th>Neurosync</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension (mm)</td>
<td>54 x 20 x 10</td>
<td>-</td>
<td>-</td>
<td>63 x 40 x 25</td>
</tr>
<tr>
<td>Weight (g)</td>
<td>14.3</td>
<td>-</td>
<td>104.3</td>
<td>43</td>
</tr>
<tr>
<td>Number of Ch.</td>
<td>1</td>
<td>64-512</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Sampling rate (SPS)</td>
<td>250 / 500</td>
<td>Up to 20,000</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>ADC reference (V)</td>
<td>±2.42</td>
<td>Adjustable</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Amplification (V/V)</td>
<td>59,400</td>
<td>Adjustable</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Dynamic range</td>
<td>±40.74</td>
<td>Adjustable</td>
<td>8,400</td>
<td></td>
</tr>
<tr>
<td>Noise level (µVrms)</td>
<td>0.11</td>
<td>0.5</td>
<td>about 1</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>24bit / 48.4nV</td>
<td>24bit / 3nV</td>
<td>14bit / 0.51µV</td>
<td></td>
</tr>
<tr>
<td>Bandwidth (Hz)</td>
<td>1-35</td>
<td>DC-3,500</td>
<td>0.2-45</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>Bluetooth 4.0</td>
<td>USB</td>
<td>2.4GHz</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>Li-polymer</td>
<td>Wall power</td>
<td>Li-polymer</td>
<td></td>
</tr>
<tr>
<td>Power consumption</td>
<td>19 hour</td>
<td></td>
<td>12 hour</td>
<td>N/A</td>
</tr>
</tbody>
</table>
IMPROVEMENT DIRECTION OF PROTOTYPE DEVICE

• Not Enough SNR: Poor SSVEP quality at behind-the-ear position

• Not Enough Computing Power: Requires external computing device

• Not Enough Communication Speed
IMPROVEMENT DIRECTION OF PROTOTYPE DEVICE

• Not Enough SNR: Poor SSVEP quality at behind-the-ear position
 • Move the electrode to back of the head (occipital region, Oz)

• Not Enough Computing Power: Requires external computing device
 • Propose the target identification algorithm for low-cost MCU and small memory
 • Maintain the BCI speller performance with negligible accuracy loss

• Not Enough Communication Speed
 • Reduce the signal processing time especially the timing dependent procedures
TARGET IDENTIFICATION ALGORITHMS

• PSDA (Power Spectral Density Analysis)
 • For single-channel SSVEP target identification
 • Simple operation: FFT & find maximum index
 • Weak performance for low SNR (signal-to-noise) SSVEP signal

![Diagram of Single-Channel EEG](image)

- **Single-Channel EEG X**
- **FFT**
- **$|X|$**
- **Maximum value**
- **Target**
TARGET IDENTIFICATION ALGORITHMS

- **Standard-CCA (Canonical Correlation Analysis)**
 - Correlation between EEG signal X and reference sinusoidal signal Y for each frequency
 - Should be computed for each target frequency \rightarrow Maximum correlation: target

Z. Lin et al., “Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs”, IEEE TBME, 2007
Target Identification Algorithms

- Combination-CCA (Comb-CCA)*

- User-specific target identification using training data → more accurate!

- Uses three datasets
 - X: Input SSVEP signal set
 - \bar{X}: Training signal set (average of SSVEP)
 - Y: Reference sinusoidal signal set

- 3 CCA calculations & 4 correlations → huge computational complexity

TARGET IDENTIFICATION COMPARISON

• Performance evaluation in terms of accuracy, processing time, and ITR (information transfer rate)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Performance</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb-CCA</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Standard-CCA</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>PSDA</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

• Comb-CCA was chosen for the baseline algorithm in this research

\[
ITR = \left(\log_2 N_f + P \log_2 P + (1 - P) \log_2 \left(\frac{1 - P}{N_f - 1} \right) \right) \times \left(\frac{60}{T} \right)
\]

- \(P \): classification accuracy
- \(T \): average time for selection
- \(N_f \): number of targets

Performance comparison of target identification algorithms (a) Accuracy, (b) Processing time (in PC), (c) ITR (Information Transfer Rate)
TARGET IDENTIFICATION COMPARISON

- Performance evaluation in terms of accuracy, processing time, and ITR (information transfer rate)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Performance</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb-CCA</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Standard-CCA</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>PSDA</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

- Comb-CCA was chosen for the baseline algorithm in this research

Performance comparison of target identification algorithms
(a) Accuracy, (b) Processing time (in PC), (c) ITR (Information Transfer Rate)
TARGET IDENTIFICATION COMPARISON

• Performance evaluation in terms of accuracy, processing time, and ITR (information transfer rate)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Performance</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comb-CCA</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Standard-CCA</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>PSDA</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

• Comb-CCA was chosen for the baseline algorithm in this research

Performance comparison of target identification algorithms
(a) Accuracy, (b) Processing time (in PC), (c) ITR (Information Transfer Rate)
Proposed Algorithm: CCA-Lite

• Optimization method #1: Signal Binarization
 - Comb-CCA with multi-bit EEG & reference signal → High computational complexity / memory
 - Comb-CCA with signal binarization → Low computational complexity w/ negligible accuracy loss
 Low memory requirement

Proposed signal binarization concept for (a) EEG signal, (b) Reference sinusoidal signal
PROPOSED ALGORITHM: CCA-LITE

• Optimization method #2: On-the-fly Covariance

Proposed Algorithm: CCA-Lite

- **Optimization method #2: On-the-fly Covariance**
 - If \(E[XY] \gg E[X]E[Y] \) then \(E[X]E[Y] \) can be ignored
 - In our application, \(E[XY] \) more bigger than \(E[X]E[Y] \)

![Comparison of E[XY] and E[X]E[Y]](image)
PROPOSED ALGORITHM: CCA-LITE

Optimization method #2: On-the-fly Covariance

- If \(E[X Y] \gg E[X]E[Y] \) then \(E[X]E[Y] \) can be ignored
 - In our application, \(E[X Y] \) more bigger than \(E[X]E[Y] \)

- Covariance matrix calculation can be performed simultaneously with SSVEP recording

Advantage from On-the-fly Covariance Calculation
EXPERIMENTAL ENVIRONMENTS

• Low-power MCU platform
 • STM32F103ZET6 ARM MCU
 • ARM Cortex-M3 (Operating Frequency : 72MHz)
 • 512KB flash memory, 64KB SRAM

• Dataset Description *
 • EEG acquisition using Biosemi’s ActiveTwo
 • ADC : 24-bit resolution
 • Sampling Frequency : 256Hz
 • Number of channel : 8 channels (We used Oz)
 • Recording Time : 4s
 • # of Target, # of subjects : 12 targets, 10 subjects

EXPERIMENTAL RESULTS

- Subject #4
- Target: 9.25Hz

- Power spectrum of training signal according to the SSVEP recording length

![Power spectrum diagrams showing frequency differences and SSVEP recordings for various lengths.](image-url)
EXPERIMENTAL RESULTS

• Power spectrum of training signal according to the SSVEP recording length

- Subject #4
- Target: 9.25Hz
EXPERIMENTAL RESULTS

• Accuracy performance according to the combination of binarization application

Signal binarization applied Comb-CCA

- **Type3**: High accuracy with small memory requirement
 - Training & Reference: pre-stored data

<table>
<thead>
<tr>
<th>Type</th>
<th>Measured EEG</th>
<th>Training EEG</th>
<th>Reference Sinusoidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Type1</td>
<td>X</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Type2</td>
<td>X</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Type3</td>
<td>X</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Type4</td>
<td>O</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Type5</td>
<td>O</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>Type6</td>
<td>O</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Type7</td>
<td>O</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

O: Signal binarization was applied
X: Signal binarization was not applied
EXPERIMENTAL RESULTS

• Accuracy performance for various target identification algorithms
 • CCA-Lite: Comb-CCA + Signal Binarization (for Train & Ref.) + on-the-fly Covariance

Accuracy at 1.5s

- CCA-Lite: 85.39%
- Comb-CCA: 86.06%
- Standard-CCA: 58.67%
- PSDA: 48.39%

Negligible Accuracy Loss
EXPERIMENTAL RESULTS

• Performance of target selection time & ITR (Information Transfer Rate)
 • Tested on Cortex-M3 based STM board (operating frequency: 72MHz)

![Graph showing performance comparison]

- 23% improved
- 93% reduced
EXPERIMENTAL RESULTS

• CCA-Lite software performance evaluation on Cortex-M3
 • M1: Signal binarization applied Comb-CCA / M2: on-the-fly covariance applied Comb-CCA
 • M1+M2: proposed CCA-Lite

Memory footprint

![Diagram showing memory footprint comparison between Conventional M2 M1 M1+M2](image)

- 92% reduced
- 47% reduced

Pure signal processing time on Cortex-M3 for single target identification

![Diagram showing pure signal processing time comparison between Conventional M2 M1 M1+M2](image)
EXPERIMENTAL RESULTS

• Overall BCI speller system performance in terms of communication speed

- Fixed target gazing time: 1.5s
- Minimum gaze shift time: 0.5s \(^1\,^2\)
- Single target identification time
 - 22% reduced!
 - Guaranteed gaze shift time 0.5s (signal processing will be done before the end of gaze shift time)

2) M. Nakanishi et al, “Enhancing Detection of SSVEPs for a High-Speed Brain Speller Using Task-Related Component Analysis”, IEEE TBME, 2018
Reusable Matrix Arithmetic Architecture

- SSVEP-based Target Identification SoC with Highly Reusable 8x8 QRD

CCA: Canonical Correlation Analysis

- CCA finds the weights W_x, W_y which gives the largest correlation between X and Y (target frequency identification)
- We use CCA-Lite consisting of three CCAs.
 - Requires QRD, Inverse, Covariance, Mult.

Xiaogang Chen, PNAS, 2015

Xiaorong Gao, 2011
REUSABLE MATRIX ARITHMETIC ARCHITECTURE

- SSVEP-based Target Identification SoC with Highly Reusable 8x8 QRD
 - Systolic architecture based QR decomposition engine
 - Same hardware, different operations \(\rightarrow\) high reusability (covariance, mult, QRD, inversion, …)
 - “High throughput, reduced area & memory access, reduced power consumption” compared to same operations
 - Target frequency identification on the low-cost edge devices.
 - System implementation w/ AFE & Wireless Comm.

- **System Implementation**
 - TI ADS1292 ADC Chip
 - Cortex-M3 DesignStart
 - Optional single chip
CONCLUSION

- Research for patients with paralysis
 - Low-cost wearable BCI system

- Propose CCA-Lite for low-complexity target identification
 - Target selection time reduction: 93%
 - ITR (Information Transfer Rate) improvement: 23%
 - Total performance improvement (for single target identification time): 22%

- Further work - support multi-ch EEG processing for better accuracy
 - SoC (System-on-chip) design with AFE (Analog Frontend) + dedicated hardware accelerator
THANK YOU

Any questions or comments - jihoonkim@ewha.ac.kr