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What is Quantization?

= Main ldea: Use fewer bits to represent our numbers when performing inference.

= Want to use the fewest number of bits possible without losing accuracy!

Image source: TensorFlow Blog
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What is Quantization Useful For?

= Smaller Models
= Less Data Movement — Lower Power
= Lower Latency

» Simpler Accelerators

This allows us to put models in places
that would otherwise be impossible!
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How Do Researchers Implement Quantization?

We tend to simulate quantization, but beyond that there is plenty of diversity

= Different Techniques
= Different Models

= Quantizing during or after training?

The Problem: Researchers don't find the toolkits included in major libraries flexible
enough, so they build everything themselves.

Duplicated work, and more opportunities for bugs!
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What this Library Gives Us

1. A set of well tested core components that we can share and re-use.

2. Higher level interfaces that implement a state machine to ensure that our code
is doing what we think it is doing.

3. Automated model conversion functionality for models that are commonly used
as benchmarks in the literature.

Unit tested code and mypy type annotations.
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Well Tested Low-Level Components

class Quantizer (nn.Module, abc.ABC):

. . . . Q@abc.abstractmethod
» Functionality like quantizer
def pre_observe(self, x: torch.Tensor):

implementations and gradient

pass
clipping.
O@abc.abstractmethod
def quantize(self, x: torch.Tensor)
» Functional (torch.nn. -> torch.Tensor:
functional) and class-based pass

(torch.nn.Module)
implementations.

Q@abc.abstractmethod
def post_observe(self, x: torch.Tensor):

pass
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An Explicit State Machine To Prevent Bugs

model.train() and model.eval() is not enough!

= We need finer control: sometimes we only want to turn on some quantizers, or
just feed some batches for calibration.

= Opt into our QModule construct and you can quickly change model settings:

with gmodule_state(module, QModuleState.CALIBRATION_WEIGHT_ONLY):
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Automated Model Conversion

= Automatically convert full precision models to fused models—including preserving
weights.

= ResNet, MobileNetV2 and EfficientNet.

fused_model = FusedResNet(
full_precision_model,
weight_quantizer=lambda module: QuantizerForModuleWeights(module),

acts_quantizer=lambda module: QuantizerForModuleActs(module)
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1. More core components: BNNs, etc
2. Flexible model conversion
3. What about language or speech models?

4. Popular research methods in one place: faster progress for the community!
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Checking a Hypothesis with Our Library: The “Range-Precision Tradeoff”

= At low bit-widths we have to
choose between range and
precision.

= Only a ~15 LOC with our
library to implement
percentile range observers.
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Should You Trade Range for Precision?

» Yes, absolutely: 15-20%+ improvements at low bit-widths (2-4 bits).

= Beneficial on both weights and activations.

= Can easily fit into the range observer quantizers used by TensorFlow and PyTorch.
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Aren’t Percentiles Slow?

= Not as much as you might
think!

» 27 minutes / epoch for
baseline, 34 minutes for
percentiles (25% slower).
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Any Questions?

https://github.com/camlsys/torchquant
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https://github.com/camlsys/torchquant

