Real-Power Computing: One Year Later

Dr Rishad Shafik & Prof Alex Yakovlev
Newcastle University

μSystems Research Group

Newcastle University
Computing is Changing

References:
Challenges

- Trillions
- Diversity
- Productivity
- Energy, Autonomy & Intelligence
Real-Power Computing

Hard real-power computing
- No battery/no storage
- Extensive power-compute co-design needed

Soft real-power computing
- With energy storage
- Power-compute co-design
- + run-time adaptation

Energy autonomy requires awareness and robustness
Real-Power Challenges

• *Energy proportionality thru’ heterogeneity*

• **Robustness** under supply variations

• **Survivability** at zero cost
 – Automatic retention (like an instinct!)
Case Study 1

Robust Perceptron Design

Basic building block of neural networks
Used in classifiers, and supervised learning
Inverter, when fed with periodic rectangular pulses with a certain duty cycle produces output that is
- Proportional to V_{dd}
- Inversely proportion to D

$$V_{out}/V_{dd} = (1-D)$$
Case Study 1 – contd.

Robust Perceptron Design
Case Study 1 – contd.
Robust Perceptron Design

\[V_{out} = (V_{dd} - GND) \cdot \frac{\sum_{i=1}^{k} DC_i \cdot W_i}{k \cdot (2^n - 1)} \]

<table>
<thead>
<tr>
<th>DC1</th>
<th>W1</th>
<th>DC2</th>
<th>W2</th>
<th>DC3</th>
<th>W3</th>
<th>(V_{out}) theoretical</th>
<th>(V_{out}) simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>70%</td>
<td>7</td>
<td>80%</td>
<td>7</td>
<td>90%</td>
<td>7</td>
<td>2.00V</td>
<td>1.99V</td>
</tr>
<tr>
<td>50%</td>
<td>1</td>
<td>50%</td>
<td>2</td>
<td>50%</td>
<td>4</td>
<td>0.42V</td>
<td>0.39V</td>
</tr>
<tr>
<td>20%</td>
<td>5</td>
<td>60%</td>
<td>6</td>
<td>80%</td>
<td>7</td>
<td>1.21V</td>
<td>1.17V</td>
</tr>
<tr>
<td>95%</td>
<td>7</td>
<td>90%</td>
<td>6</td>
<td>80%</td>
<td>6</td>
<td>2.00V</td>
<td>2.05V</td>
</tr>
<tr>
<td>30%</td>
<td>1</td>
<td>40%</td>
<td>4</td>
<td>50%</td>
<td>2</td>
<td>0.34V</td>
<td>0.29V</td>
</tr>
<tr>
<td>80%</td>
<td>7</td>
<td>20%</td>
<td>3</td>
<td>50%</td>
<td>4</td>
<td>0.96V</td>
<td>0.89V</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>(P_{\text{min}})</th>
<th>(P_{\text{max}})</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25uW</td>
<td>400mW</td>
<td>No change</td>
</tr>
</tbody>
</table>
• Design duty cycle *transcoding*, online learning and simplified power mgmt. circuit

• Implement a Neural Network
 – 100s of perceptrons

• Fabricate and validate for real-applications
Papers/Exemplars/Demos

- www.async.org.uk
- www.staff.ncl.ac.uk/rishad.shafik

- Follow us on Twitter
 @nclmicrosystems
 @RishadShafik
 @alexyakovlevncl