Dr. James Price

University of Bristol / GW4 Alliance

Isambard: tales from the world's first Armbased production supercomputer

'Isambard' is a new UK Tier 2 HPC service from GW4

Isambard Kingdom Brunel 1804-1859

Isambard system specification

- 10,752 Armv8 cores (168 x 2 x 32)
 - Cavium ThunderX2 32 core 2.1GHz
- Cray XC50 Scout form factor
- High-speed Aries interconnect
- Cray HPC optimised software stack
 - CCE, CrayPAT, Cray MPI, math libraries, ...
- Technology comparison:
 - x86, Xeon Phi, Pascal GPUs
- Phase 1 installed March 2017
- Phase 2 (the Arm part) currently in bring-up
- £4.7m total project cost over 3 years

Cavium ThunderX2, a seriously beefy CPU

- 32 cores at up to 2.5GHz
- Each core is 4-way superscalar, Out-of-Order
- 32KB L1, 256KB L2 per core
- Shared 32MB L3
- Dual 128-bit wide NEON vectors
 - Compared to Skylake's 512-bit vectors, and Broadwell's 256-bit vectors
- 8 channels of 2666MHz DDR4
 - Compared to 6 channels on Skylake, 4 channels on Broadwell
 - AMD's EPYC also has 8 channels

Benchmarking platforms

Processor	Cores	Clock	TDP	FP64	Bandwidth
		speed	Watts	TFLOP/s	GB/s
		GHz			
Broadwell	2 × 22	2.2	145	1.55	154
Skylake Gold	2×20	2.4	150	3.07	256
Skylake Platinum	2×28	2.1	165	3.76	256
ThunderX2	2×32	2.2	175	1.13	320

BDW 22c Intel Broadwell E5-2699 v4, \$4,115 each (near top-bin)
SKL 20c Intel Skylake Gold 6148, \$3,078 each
SKL 28c Intel Skylake Platinum 8176, \$8,719 each (near top-bin)
TX2 32c Cavium ThunderX2, \$1,795 each (near top-bin)

Key architectural comparisons (node-level, dual socket)

Isambard's core mission: deploying Arm in production HPC

Starting by porting/benchmarking/optimizing codes from the top 10 most heavily used on Archer:

- VASP, CASTEP, GROMACS, CP2K, UM, NAMD, Oasis, SBLI, NEMO
- Most of these codes are written in FORTRAN

Additional important codes for project partners:

• OpenFOAM, OpenIFS, WRF, CASINO, LAMMPS, ...

Performance on heavily used applications from Archer

Performance summary

- Performance is competitive with contemporary Intel processors
 - ThunderX2 is faster when memory bandwidth is critical
 - ThunderX2 is slower when FLOP/s and L1 cache bandwidth matters
 - Even in the worst case, only drops ~30% performance versus Broadwell
- Next-gen Arm CPUs will increase FLOP/s + cache bandwidth
 - Introduction of SVE will allow vector width of up to 2048-bits
 - Fujitsu A64FX chip unveiled recently with 512-bit SVE
 - Expecting 512-bits to be a common choice for server chips

Benchmark	ThunderX2	Broadwell	Skylake
STREAM	Arm 18.3	Intel 18	CCE 8.7
CloverLeaf	CCE 8.7	Intel 18	Intel 18
TeaLeaf	CCE 8.7	GCC 7	Intel 18
SNAP	CCE 8.6	Intel 18	Intel 18
Neutral	GCC 8	Intel 18	GCC 7
CP2K	GCC 8	GCC 7	GCC 7
GROMACS	GCC 8	GCC 7	GCC 7
NAMD	Arm 18.2	GCC 7	GCC 7
NEMO	CCE 8.7	CCE 8.7	CCE 8.7
OpenFOAM	GCC 7	GCC 7	GCC 7
OpenSBLI	CCE 8.7	Intel 18	CCE 8.7
UM	CCE 8.6	CCE 8.5	CCE 8.7
VASP	GCC 7.2	Intel 18	Intel 18

Enabling co-design of future architectures with cycle-accurate simulation

- We've developed a new configurable cycle accurate simulator in Bristol
- Within ~5-10% of TX2 hardware
- Highly configurable to almost any design of HPC CPU:
 - Planning a Post-K / A64fx version
 - Already supports SVE binaries
- Plan future support for x86, RISC-V, co-processors, ...

Conclusions

- Results show ThunderX2 performance is competitive with current high-end server CPUs, while performance per dollar is compelling
- The software tools ecosystem is already in good shape
- The full Isambard XC50 Arm system is coming up now, we're aiming to have early results to share at SC18
- The signs are that Arm-based systems are now real alternatives for HPC, reintroducing much needed competition to the market

For more information

Comparative Benchmarking of the First Generation of HPC-Optimised Arm Processors on Isambard

S. McIntosh-Smith, J. Price, T. Deakin and A. Poenaru, CUG 2018, Stockholm

http://uob-hpc.github.io/2018/05/23/CUG18.html

Bristol HPC group: https://uob-hpc.github.io/

Isambard: http://gw4.ac.uk/isambard/

Build and run scripts: https://github.com/UoB-HPC/benchmarks

Backup

Comparing performance per Dollar

- Hard to do this rigorously
 - RRP is not what anyone pays
 - Whole system cost has to be taken into account
 - Purchase price vs. TCO
- However, we can form some useful intuition
 - The following charts were generated by taking the performance results, dividing by the official published list prices of the CPUs only, then renormalizing to Broadwell

Performance per Dollar for applications

