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ABSTRACT
As the machine learning and systems community strives to achieve higher energy-efficiency through custom DNN
accelerators and model compression techniques, there is a need for a design space exploration framework that
incorporates quantization-aware processing elements into the accelerator design space while having accurate and
fast power, performance, and area models. In this work, we present QAPPA, a highly parameterized quantization-
aware power, performance, and area modeling framework for DNN accelerators. Our framework can facilitate
the future research on design space exploration of DNN accelerators for various design choices such as bit
precision, processing element type, scratchpad sizes of processing elements, global buffer size, device bandwidth,
number of total processing elements in the the design, and DNN workloads. Our results show that different bit
precisions and processing element types lead to significant differences in terms of performance per area and
energy. Specifically, our proposed lightweight processing elements achieve up to 4.9× more performance per area
and energy improvement when compared to INT16 based implementation.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved remarkable
accomplishments across various applications ranging from
image recognition (Tan & Le, 2019), object detection (Tan
et al., 2020), to natural language processing (Devlin et al.,
2019). However, the increasing model size and computa-
tional cost of these models become a challenging task for
on-device machine learning (ML) endeavours due to the
stringent performance per area and energy constraints of the
edge devices. To this end, while machine learning practi-
tioners focus on model compression techniques (Han et al.,
2016; Ding et al., 2018; Chin et al., 2020), computer ar-
chitects investigate hardware architectures to overcome the
energy-efficiency problem and improve the overall system
performance (Inci et al., 2020c;b;a; 2021).

As computing community hits the limits on consistent per-
formance scaling for traditional architectures, there has been
a rising interest on enabling on-device machine learning
through custom DNN accelerators. As we deeply care about
performance per area and energy-efficiency from a hardware
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Figure 1. Schematic depicting QAPPA framework, with accelerator
parameters and DNN configuration as inputs. The framework
takes in accelerator parameters and layer-wise DNN configurations
and generates power, performance, area results, and statistics on
hardware utilization and memory accesses.

point of view, tailored DNN accelerators have shown sig-
nificant improvements when compared to CPUs and GPUs
(Chen et al., 2016; Jouppi et al., 2017; Parashar et al., 2017;
Gao et al., 2017). To better understand the trade-offs of
various architectural design choices and DNN workloads,
there is a need for a design space exploration framework
that can rapidly iterate over various designs and generate
power, performance, and area (PPA) results. To this end, in
this work we present QAPPA, a quantization-aware power,
performance, and area modeling framework for DNN accel-
erators.
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This work makes the following contributions:

• We present QAPPA, a quantization-aware power, per-
formance, and area modeling framework for DNN ac-
celerators. Our framework can enable future research
on design space exploration of DNN accelerators for
various design choices such as bit precision, processing
element types, scratchpad size of processing elements,
global buffer size, device bandwidth, number of to-
tal processing elements in the the design, and DNN
workloads.

• Our framework provides power, performance, and area
results not just for a single hardware design point but
for a range of different hardware designs as opposed to
prior art (Qi et al., 2017; Cai et al., 2017). Therefore,
it can be used to analyze trade-offs of various architec-
tural design choices and DNN workloads at the same
time.

The rest of the paper is organized as follows. In Section 2,
we present a literature review on power and runtime mod-
els for CNNs and design space exploration frameworks for
hardware accelerators. In Section 3, we describe the archi-
tectural details of the QAPPA framework and the details of
our methodology for power, performance, and area model-
ing of DNN accelerators. In Section 4, we show experimen-
tal results demonstrating the efficiency of QAPPA’s power,
performance, area models and the efficacy of lightweight
processing elements to conventional designs in terms of per-
formance per area and energy through a suite of case studies.
Finally, Section 5 concludes the paper by summarizing the
results.

2 RELATED WORK

Prior art has proposed runtime and energy models for DNN
workloads (Cai et al., 2017; Qi et al., 2017). However, these
models have been implemented specifically for GPU plat-
forms and thus they create an important limitation for a de-
sign space exploration of hardware architectures and poten-
tially hardware/ML model co-design opportunities (Gupta
& Akin, 2020; Yang et al., 2020). On the other hand, prior
art has proposed tools and simulation methodologies for
accelerator design. For example, SCALE-Sim (Samajdar
et al., 2018) is a cycle accurate, systolic-array based DNN
accelerator simulator. Similarly, Aladdin (Shao et al., 2014)
is a pre-RTL power and performance accelerator simulator.
Although these tools help to perform preliminary analysis
on the design space for accelerators in different aspects, they
do not incorporate quantization-aware processing elements
and they do not generate RTL output based on the input
hardware configuration which is an important impediment
for enabling deployment of DNNs onto edge devices.

3 METHODOLOGY

In this section, we first explain the implementation details
and architectural components of our QAPPA framework,
as depicted in Figure 1. Next, we detail the lightweight
processing elements (LightPE) that we implemented in our
framework to provide a specialized processing element (PE)
type for quantized DNN models. Finally, we explain our
power, performance, and area modeling and design space
exploration methodology.

3.1 QAPPA Framework

To enable comprehensive design space exploration for DNN
accelerators for on-device machine learning, we imple-
mented QAPPA, a highly parameterized spatial-array based
DNN accelerator framework in RTL. Our framework en-
ables hardware designers and machine learning practition-
ers to rapidly iterate over various accelerator designs and
DNN configurations and better understand trade-offs of dif-
ferent architectural components of the design for dizzying
requirements of deploying machine learning models to edge
devices. Moreover, hardware designers can also use the
automatically generated RTL code to follow the design syn-
thesis flow.

As depicted in Figure 1, QAPPA framework is based on
spatial-array based accelerators and utilizes row station-
ary dataflow which has been demonstrated to optimize the
data movement in the storage hierarchy (Chen et al., 2016).
QAPPA features a set of processing elements organized as a
2D array and a global buffer that stores input feature maps,
filters, and activations. The number of PEs in each dimen-
sion can be tuned for different power, performance, and area
requirements. In each PE, there are input feature map, fil-
ter, and partial sum scratchpads and a multiply-accumulate
(MAC) unit which can be changed based on the desired
bit precision. Each of these architectural components can
be tuned in a flexible and automated manner to perform a
comprehensive design space exploration for on-device edge
accelerators.

Lightweight Processing Elements (LightPE)

To enrich the design space of hardware accelerators and
achieve a better Pareto-frontier in terms of performance per
area and energy-efficiency perspectives, we include LightPE
implementations in our framework. LightPEs utilize 8 bits
for activations and 4 bits and 8 bits for weights for LightPE-
1 and LightPE-2 designs, respectively. As 4 bit and 8 bit
quantization techniques for on-device machine learning be-
came prevalent in various computing platforms, we provide
these specialized quantization-aware PE types in our QAPPA
framework to help hardware designers to enrich their design
space and hopefully find better Pareto-frontiers.

Besides their low-precision benefits such as reducing the
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Figure 2. Power (top chart), performance (middle chart), and area (bottom chart) estimation results for various processing element types
such as FP32, INT16, LightPE-1, and LightPE-2. Each data point corresponds to a different hardware configuration that can be achieved
by using the corresponding processing element type. As it can be seen, the proposed polynomial model agrees closely with the actual
values extracted from the synthesis tools.

storage requirements, LightPEs also replace the multipli-
cations with more energy and area-efficient one shift or
a limited number of shifts and add operations(Ding et al.,
2018). Therefore, they also achieve significant power and
area gains when compared to full-precision 32 bit floating
point and 16 bit integer based designs with only slight accu-
racy degradation (Ding et al., 2018). As a results, LightPEs
provide an enriched design space for hardware designers
to analyze various trade-offs between performance per area
and energy.

Power, Performance, and Area Modeling

To build our quantization-aware power, performance, and
area models, we use various hardware and DNN configura-
tions. Specifically, to cover this comprehensive design space
of hardware accelerators, we run experiments by varying
global buffer size, number of PEs per row and column in
the 2D PE array, bit precision, and PE type (FP32, INT16,
LightPE-1, and LightPE-2). Within each PE, we also vary in-
dividual scratchpad sizes for input feature map, filter scratch
pad, and partial sum scratchpad.

We use Synopsys Design Compiler and the open-source
FreePDK45 which is a commonly used process design kit
(Stine et al., 2007) to synthesize our designs to obtain power,

area, and initial timing results. We use Synopsys VCS
RTL simulator to perform functional verification and collect
timing information for various DNN configurations such as
VGG-16 (Simonyan & Zisserman, 2014), ResNet-34, and
ResNet-50 (He et al., 2016) that are implemented in our
testbenches. After collecting power, area, and timing results
from these tools, we use polynomial regression models and
model selection techniques based on k-fold cross validation
(Mosteller & Tukey, 1968) to tune the model parameters
and fit the model.

4 RESULTS

In this section, we present power, performance, and area
modeling results for each processing element type and per-
form a design space exploration on VGG-16 (Simonyan
& Zisserman, 2014), ResNet-34, and ResNet-50 (He et al.,
2016) design spaces to iterate through our framework to
demonstrate the flexibility of QAPPA for future studies.

As detailed in Section 3, QAPPA framework provides power,
performance, and area models that significantly speed up
the design space exploration. Figure 2 shows the actual
and estimated power, performance, and area results for each
processing element type such as FP32, INT16, LightPE-1,
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Figure 3. Normalized performance per area vs. normalized energy
results with respect to the INT16 hardware configuration with the
highest performance per area for VGG-16 design space

and LightPE-2. Each data point in Figure 2 corresponds to
a different hardware accelerator configuration in the com-
prehensive design space. As shown by the results, QAPPA’s
PPA models achieve high correlation to the actual PPA val-
ues. Figure 2 also shows that the FP32 implementation has
the highest area and power cost whereas LightPEs have the
lowest area and power results when one processing element
is considered. This shows the hardware-efficiency of Light-
PEs when compared to conventional PE implementations.

To show the efficacy of LightPEs to conventional PE designs,
we perform design space exploration on VGG-16 (Simonyan
& Zisserman, 2014), ResNet-34, and ResNet-50 (He et al.,
2016) design spaces as shown in Figure 3-5. We show the
normalized performance per area and normalized energy
results for each PE type with respect to the baseline INT16
based implementation with the highest performance per area
for the given design space.

Figure 3-5 shows that LightPE implementations consistently
outperform conventional INT16 and FP32 implementations
in both aspects, which proves their efficacy in terms of
hardware-efficiency. Specifically, LightPE-1 and LightPE-
2 achieve 4.9× and 4.1× more performance per area and
4.9× and 4.2× energy improvement on average when com-
pared to the best INT16 hardware configuration, respec-
tively. On the other hand, INT16 baseline implementation
achieves 1.7× more performance per area and 1.4× energy
improvement on average when compared to the best FP32
configuration. These conclusions hold for all models con-
sidered in this work VGG-16, ResNet-34, and ResNet-50,
thereby showing that the benefits of using lower precision
generalize across a variety of models. We conclude that dif-
ferent bit precisions and PE types can lead to significantly
different performance per area and energy results which are
two critical metrics for hardware designers and machine
learning practitioners strive to improve upon.

Figure 4. Normalized performance per area vs. normalized energy
results with respect to the INT16 hardware configuration with the
highest performance per area for ResNet-34 design space

Figure 5. Normalized performance per area vs. normalized energy
results with respect to the INT16 hardware configuration with the
highest performance per area for ResNet-50 design space

5 CONCLUSION

In this work, we present QAPPA, a quantization-aware
highly parameterized power, performance, and area model-
ing framework for DNN accelerators. Our framework can
foster the future research on design space exploration of
DNN accelerators for various design choices such as bit pre-
cision, processing element type, scratchpad size of process-
ing elements, global buffer size, device bandwidth, number
of total processing elements in the the design, and DNN
workloads. Our results show that different bit precisions
and processing element types lead to significant differences
in terms of performance per area and energy. Specifically,
LightPE-1 and LightPE-2 achieve 4.9× and 4.1× more per-
formance per area and 4.9× and 4.2× energy improvement
on average when compared to the best INT16 hardware con-
figuration, respectively. Therefore, design space exploration
of quantization-aware DNN accelerators merits a meticulous
analysis that take these factors into account.
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