
On-Device NLP @ Facebook
Ahmed Aly, Kshitiz Malik



● On-Device NLP: Why?

● Challenges

● On-Device NLP @Facebook: Overview

● Horizontal approaches

● Open problems

Agenda



On-Device NLP: Why?

Privacy Latency Reliability



On-Device NLP: Challenges

● Diverse and Strict compute and memory requirements
○ Diverse set of chipsets with different compute specs
○ Strict memory and compute budgets

● Power consumption and battery considerations
○ Always on Vs Portable

● Toolchain limitations
○ DSP/GPU strict runtime platforms
○ Pytorch Vs Pytorch Edge
○ Tensorflow Vs Tensorflow light

● Model development experience
○ Stricter model releases and deployments
○ Harder benchmarking 



On-Device NLP Tasks

● On-Device Natural Language 
Understanding (NLU)

On-Device NLP @Facebook: Overview

AI Assistant on Portal Smart Keyboard on Oculus

On-Device NLP Tasks

● On-Device Language Modeling (LM)
● Federated learning

On-Device NLP Research

● Extreme model compression
● Light-weight CNN representations
● Neural architecture search
● On-Device Seq2Seq models 

(Accepted in NAACL 2021)

https://arxiv.org/abs/2004.07320
https://arxiv.org/abs/2002.01535


Simple 

On-Device NLP @Facebook: On-Device NLU on Portal
NLU is the task of converting user utterances to machine understandable representation.

Call John
Call(Contact_name:John)

Hierarchical 

Remind me to call John

Server-side Baseline Model

Server-side Baseline Model



On-Device NLP @Facebook: On-Device LM on Oculus
LM (for Smart Keyboard) is the task of predicting the most probable next word given the typed words/characters

Word
Embedding

Context
Word

Embedding

Average
Pooling

Context
Representation

Dense
Feature

LSTM

Output Next Word Probability

Server-side Baseline Model



Horizontal Approaches: Latency

● Recurrence is slow!
○ Encoder: CNNs beat RNNs. LightConv
○ Decoder: Non-autoregressive

● Latency aware Neural Architecture Search (NAS)
● Efficient model layers: question everything

○ Separable Conv Layers
○ Combine Input and Forget Gates
○ Tightly coupled linear layers

● Optimized operator implementation
○ Custom LSTM implementation

https://arxiv.org/abs/2002.01535
https://arxiv.org/abs/2004.01655
https://arxiv.org/abs/1610.02357


Horizontal Approaches: Memory & Tooling

Memory
● Byte/Character Embeddings

○ Instead of word/ subword embeddings 

● Neural Architecture Search (NAS)
● Quantization
● Sparsification (storage, bandwidth)

Tooling
● Compilers: PyTorch Mobile, Glow
● Benchmarking: AI Bench

https://arxiv.org/abs/1508.06615
https://pytorch.org/mobile/home/
https://ai.facebook.com/tools/glow/
https://github.com/facebook/FAI-PEP


Open Problems: Latency & Memory

● Transformers are slow
○ O(n2) operations
○ Parallelizable - great for GPUs, not mobile processors

● Non-autoregressive decoding quality
● Word embedding compression
● Graceful accuracy degradation
● Network architecture search

○ Hardware-aware NAS 
○ NAS search efficiency

https://arxiv.org/abs/2009.06732
https://arxiv.org/abs/2012.15833
https://assets.amazon.science/83/c1/d3d2f867440eb9e79ab3943c2844/extreme-model-compression-for-on-device-natural-language-understanding.pdf
https://arxiv.org/abs/2101.09336
https://arxiv.org/abs/1812.03443


Open Problems: Tooling

● Benchmarking
○ Flops != Latency
○ Benchmarking is unreliable, slow

● Taming heterogeneity 
○ Many DSPs, GPUs, NPUs
○ APIs: Metal (iOS), Vulcan (Android), OpenGL ES
○ Frameworks: Pytorch Mobile, TF, CoreML

● ML Compilers (Glow/TVM) 
● Intermediate Representations (MLIR)

https://research.fb.com/wp-content/uploads/2018/12/Machine-Learning-at-Facebook-Understanding-Inference-at-the-Edge.pdf
https://mlir.llvm.org/

