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SMARTGI: GLOBAL ILLUMINATION WITH 
SPACE VOXELIZATION ON MOBILE

MOVING MOBILE 
GRAPHIC

SHUN CAO (TENCENT GAMES)

Good afternoon, everyone. I'm Shun from Tencent Games. Today, I'd like to talk about 
a mobile friendly global illumination solution standing out from the traditional 
voxelizations.
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WHY WE DO THIS

INTRODUCTION

Before diving into any technical details, it might be helpful to look back at why we 
need to do this and what happened behind the stage.
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INTRODUCTION

• Realtime global illumination on mobile
− Realtime , Not lightmaps or precomputed probes

− Rich features, Diffuse and specular reflections,emissive,SkinnedMeshes

− Platforms, works on mobiles and other platforms

• Prior works on console / PC

• Key factors on mobile

• Our ideas

As we all know, offline baking solutions are very popular in mobile game engines. Our 
motivation at the very beginning was to deliver a real-time GI solution, which does 
not need baking and can achieve various advanced lighting effects, enabling us to 
create fully dynamic game scenes on today's mobile devices.
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INTRODUCTION

• Realtime global illumination on mobile

• Prior works on console / PC
− Voxel Global Illumintaion

− Dynamic Diffuse Global Illumination

− Global Illumination Based on Surfels

− Lumen

• Key factors on mobile

• Our ideas

We have seen many real-time global illumination solutions shining on Console and PC. 
We have carefully studied their PROs and CONs and learned from them while 
developing our own solution. For example, the voxel-based, dynamic probe-based, 
and surfels-based solutions, all of them provide a simplified representation of the 
scene with lighting cache, and make it possible to fast sample lighting data 
represented by that. However, all these options either have an inherent limitation on 
visual effects, or seriously challenge the rendering capacity of mobile devices. For 
instance, voxelization based on clipmaps may cause light leakage due to the 
insufficient voxel precision when the shading point is in distance. Dynamic 
probe-based solution requires precise raytracing for dynamic generation and offset 
calculation to address issues like light leakage or dark spots. Surfels solutions, which 
are often based on Gbuffer, suffer from the lack of scene representation when the 
camera enters the scene for the first time. Even though Lumen does not have all 
these issues, it heavily relies on SDF and Meshcard, which are very performance 
demanding.
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INTRODUCTION

• Realtime global illumination on mobile

• Prior works on console / PC

• Key factors on mobile
− Peformance Optimizations

• Bandwidth

− Memory Usage

• How many gpu data for GI

− Use Device Capabilities

• Main Streaming Devices

− Battery Usage

• Energy efficent algorithms

• Our ideas

Thanks to all the analyses, we believe that the following factors are important when 
implementing any mobile GI, such as GPU bandwidth, memory usage, mobile 
hardware capabilities, and power consumption. We all know that there is still a 
significant gap between mobile and desktop GPU bandwidth capacities, which 
matters to performance and power consumption. Memory usage is also crucial; 
excessive memory footprint can easily lead to a crash. Although high-end mobile 
GPUs now support raytracing, many devices in the market are left behind. Higher 
power consumption means battery drainage and overheating coming much earlier, 
which downclocks the GPU with worse performance.
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INTRODUCTION

• Realtime global illumination on mobile

• Prior works on console / PC

• Key factors on mobile

• Our ideas
− Hierachical voxelized scene

• Not sparse octree, GPU cache unfriendly

• Not clipmaps, low memory space utilization

• Two-level voxelization,balancing the advantages of svo and clipmaps

− Reprojection screen probes

• Only a few tracing rays

• Reuse screen probe radidance data 

With a considerable amount of learning and struggling, we finally reached the point 
that a brand new voxel-based algorithm is coming up. It was built on the efficient 
sparse octrees and cache-friendly clipmaps to achieving a multi-level voxel-based 
scene representation. We also didn't forget screen probes, as what is in Lumen, to 
minimize raytracing workloads. Moreover, we improved it by introducing a screen 
probe reprojection technique, to further simplify lighting with even fewer rays.
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HOW WE IMPLEMENT

METHODOLOGY

Now, let's dive into some of the most interesting implementation details.
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ARCHITECTURE

Here is the overall architecture diagram of the solution, which consists of three main 
parts: Bricklizer, FinalGather, and Lighting Composition. Bricklizer is our approach to 
achieving hierarchical voxelization. FinalGather is the process of collecting lighting 
based on screen probes and interpolating lighting for each pixel shading from the 
radiance information of the screen probes. The final lighting composition process is 
relatively simple, involving the overlaying of direct and indirect lighting.
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BRICKLIZER

• Overview
− CPUData

− GPUData

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing

• Optimization

First, let's take a look at the overall process of Bricklizer. On the CPU side, we generate 
candidate blocks, referred to as bricks, based on the visible range. These candidate 
bricks are placed in a candidate queue, and a fixed number of bricks are voxelized 
each frame based on a certain priority. After voxelization, we have a process to repair 
and optimize the voxelization, such as filling holes in specific directions of the voxels 
and eliminating invalid faces between two voxels. Once the brick voxelization is 
complete, we perform lighting injection, including sampling direct light sources and 
reflecting light from other voxels onto the current voxel. Finally, we can use the HDDA 
algorithm to calculate the radiance of the screen probes.
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BRICKLIZER

• Overview
− CPUData

− GPUData

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing

• Optimization

The core data structure in the CPU is illustrated as follows. During initialization, two 
allocators are initialized based on the given texture sizes of BrickMappingAtlas and 
BrickVisFacesAtlas, and an array is created by stringing together the Bias as the base 
elements. Some important parameters in Brick are:
AtlasBias: The Bias obtained from BrickAllocator, used for mapping to 
BrickMappingAtlas.
PageList: Maintains the PageBias of several Bricks in VisFacesAtlas in the form of an 
array.
bAllocated: Indicates whether space has been allocated and is also used to distinguish 
whether capture is complete.
bRemove: Bricks exist in three lists in the form of smart pointers. If a brick needs to be 
deleted, set this flag to 1, and then delete it from the BricksTable. The other two lists 
will check this flag before processing. PrimitiveList contains all the primitives intersect 
with the brick.
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BRICKLIZER

• Overview
− CPUData

− GPUData

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing

• Optimization

The resource organization structure in the GPU is illustrated as follows. For the 3D 
scene shown, BrickTexture stores the actual storage locations of each Brick with a 
value in BrickMappingAtlas. The default configuration is that each Brick covers a 
range of 4x4x4 m, with a total coverage of 512x512x128 m. BrickMappingAtlas stores 
data in Voxel units, where each Voxel stores a mapping pointer to the next level, 
composed of 32 bits. 26 bits are used to represent x and y-axis offsets, and 6 bits 
indicate the presence or absence of each face. The actual storage carrier for each 
voxel face is a 2D Atlas called BrickVisFacesAtlas, which tightly stores every valid face 
(where the adjacent voxel is empty or translucent). Only the last page of each Brick 
may contain intra-page fragments, so the space utilization is extremely high. The 
following two 3D Textures are auxiliary structures for HDDA Tracing. Among them, 
BrickGroupTexture uses 4x4x4 Bricks as a composition unit, with each grid storing a 
64-bit BitMask used to indicate the presence or absence of Bricks. Similarly, 
BrickBitMask uses BitMask to represent the presence or absence of corresponding 
voxels.

11



BRICKLIZER

• Overview

• Brick Generate & Update
− Camera Update

− Dynamic Meshes

− Update Brick Candicates

• Brick Voxelizer

• Lighting Injection

• Brick Tracing

• Optimization

Besides full updates caused by entering the scene or BrickReset, only two changes can 
lead to Brick updates: one is the addition of Bricks caused by camera movement, and 
the other is updates caused by Mesh changes, including Mesh deletion, addition, and 
movement. Full updates and camera movement updates can be attributed to updates 
based on bounding boxes, requiring normalization of the bounding boxes to ensure 
that their boundaries align with Brick boundaries. Then, for each BrickPos inside, use 
BricksTable to determine whether the corresponding Brick exists. If not, add it to the 
BrickPosSet.

Next, obtain the updated bounding box of the Mesh, expand it to align its boundaries 
with Brick boundaries, and then iterate through BrickPos. If it already exists, it needs 
to be cleared and regenerated. If it does not exist, add it to the BrickPosSet for 
subsequent processing. All Bricks waiting for updates are added to the BrickPosSet, 
and then multithreading is used to initially cull Meshes, retaining only those 
intersecting with the updated bounding box. Then, multithreading is used to traverse 
all Bricks and Primitives. After traversal, each Brick will have its own Mesh list, and 
Bricks that do not intersect with Meshes can be deleted. The rest are added to 
CandiateBricks. In the above steps, Bricks that need to be deleted in this frame will 
also be added to DirtyBricks for processing.
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BRICKLIZER

• Overview

• Brick Generate & Update
− Camera Update

− Dynamic Meshes

− Update Bricks

• Update Increment frame by frame

− Camera frustum

− Camera distance

• Expand Atlas

• Brick Voxelizer

• Lighting Injection

• Brick Tracing

• Optimization

After updating the Bricks, it is necessary to select k Bricks from the CandiateBricks for 
updating in the current frame. The selection strategy can rely on factors such as the 
distance from the camera or the distance within the view frustum. As shown in the 
figure below, priority should be given to updating the bricks within the view frustum, 
followed by bricks closer to the camera. After the selection, it is essential to ensure 
that there are remaining Bricks and Pages in both Allocators. If there are not enough, 
it will trigger the recycling process or memory expansion logic. The recycling process 
will reclaim the space of all Bricks outside the update range. Memory expansion will 
double the size of BrickMappingAtlas or BrickVisFacesAtlas, and an additional pass 
will be required to move the original Atlas data to the corresponding locations.
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BRICKLIZER

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing

• Optimization

The voxelization process currently has significant optimization potential and is also 
the most time-consuming part. In the current strategy, each brick generates a 
corresponding MeshDrawCommand based on its Mesh list. Each Brick then 
undergoes voxelization in three directions, and the results are temporarily written 
into a temporary 3D texture generated in the current frame for subsequent 
processing. When voxelizing, it is advisable to combine MultiView and voxelize in 
three directions simultaneously to reduce DrawCalls and other operations.
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VISFACECOMPACT

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing

• Optimization

Each brick is pre-allocated with 6 to 8 pages, and each page occupies 8x8 pixels. The 
compression and allocation of all valid faces for voxels within a brick are handled 
here. The specific bias for each voxel's visface is tightly arranged within these pages, 
ensuring that only the last page may have unused space. If the 8 pages are 
insufficient, we will feedback to the CPU to request additional pages. The purpose of 
using large-grained pages for allocation is to facilitate efficient page recycling.
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BRICKLIZER

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection
− Lighting Injection Priority

− First Bounces

− Multi Bounces

• Brick Tracing

• Optimization

Lighting calculations can be divided into two parts for processing: direct lighting and 
indirect lighting.
Before calculating direct lighting for each frame, k Bricks are selected from a 
candidate list to undergo direct lighting computations. The selection can be based on 
sorting factors such as their position within the view frustum or their distance from 
the camera.
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BRICKLIZER

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection
− Lighting Injection Priority

− First Bounces
• Caculate direct lighting from check visibity with lights

− Shadow map 

− HDDA Raytracing

− Multi Bounces

• Brick Tracing

• Optimization

Prior to the direct lighting calculation, to maximize hardware utilization, all valid faces 
within a brick are compacted into a VisBuffer. As illustrated in the diagram below, the 
upper half depicts the compaction logic. Since the BrickMappingAtlas already stores 
the storage information for each face corresponding to a voxel, this value can be 
directly retrieved. If a voxel exists and has three valid faces, three consecutive spaces 
are requested from the Allocator, and the index values of these valid faces in the 
VisFacesAtlas are written into the buffer.
Based on the Allocator, the number of thread groups can be determined, with each 
thread handling one valid VoxelFace. The basic material properties are fetched from 
the BrickAtlas. If the ShadowMap is valid, a direct sample can be taken; otherwise, a 
separate ShadowRay needs to be cast to determine if the point is in shadow. 
Subsequently, direct lighting is calculated based on factors such as normal weights, 
light source type, and material information. Finally, the results are written into the 
LightingAtlas.
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BRICKLIZER

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection
− Lighting Injection Priority

− First Bounces

− Multi Bounces

• Gathering Lighting data from last frame Brick lighting data

• Brick Tracing

• Optimization

Multi Bounces:
The process for indirect lighting calculations is similar to direct lighting. First, k Bricks 
requiring radiance updates in the current frame are identified. Then, the indices of 
the effective faces of these Bricks are compacted into a Buffer to facilitate subsequent 
GPU thread group and thread allocation. For each effective face, n rays are emitted in 
hemispherical directions, and the collected results are weighted and averaged to 
calculate the Irradiance and store it.
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BRICKLIZER

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing
− Coarse Test

• GroupBitMask ( 64 bricks / voxel)

• 16m / step

• Brick exists or not

− Finer Test

• BrickBitMask ( 64 voxels / brick)

• 4m / step ( voxel size is 0.5m)

• Voxel exists or not

• Optimization

Utilizing BrickGroupBitMask and BrickBitMask, the HDDA algorithm can be 
implemented, enabling fast raycasting and intersection detection. The specific 
processing logic is as follows:
Starting Point Offset: When a ray originates from a starting point, the starting point 
needs to be translated outward along the ray direction to the surface of a voxel for 
tracing, avoiding self-intersection.
BrickGroupTracing: Based on the starting point's position, the corresponding 
BrickGroup is located. If the Group exists, the corresponding 64-bit BitMask is 
retrieved.
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BRICKLIZER

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing
− Coarse Test

• GroupBitMask ( 64 bricks / voxel)

• 16m / step

• Brick exists or not

− Finer Test

• BrickBitMask ( 64 voxels / brick)

• 4m / step ( voxel size is 0.5m)

• Voxel exists or not

• Optimization

• Default config variables

Here are the default config variables.The default voxelsize is 0.5 meters,there are 
8x8x8 voxels in one brick,thus one brick covers the range of 4 meters.There are 4x4x4 
bricks in one brickgroup,so the brickgroup covers the range of 16 meters.We have the 
number of 32x32x8 brickgroups ,so the we can cover 512x512x128 meters.
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BRICKLIZER

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing
− Coarse Test

• GroupBitMask ( 64 bricks / voxel)

• 16m / step

• Brick exists or not

− Finer Test

• BrickBitMask ( 64 voxels / brick)

• 4m / step ( voxel size is 0.5m)

• Voxel exists or not

• Optimization

• Geting lighting data from brick and visface atlas

Here is the Pseudocode how we get lighting data from brick and 
visfacelightingatlas.First raymarching is in bricks levels with brickgroupbitmask.Then 
the voxels level raymarching.Each raymarching process use 64bits to check 64 bricks 
or voxels is presence or not.
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BRICKLIZER

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing
− Coarse Test

• GroupBitMask ( 64 bricks / voxel)

• 16m / step

• Brick exists or not

− Finer Test

• BrickBitMask ( 64 voxels / brick)

• 4m / step ( voxel size is 0.5m)

• Voxel exists or not

• Optimization

• RayMarching with BrickMask

the Pseudocode how we get valid brick from brickmask.and raymarching on voxel 
level is similar.
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BRICKLIZER

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing

• Optimization
− Fix holes

− Brick Reprojection

Firstly, it is necessary to identify which faces need to be repaired. To briefly explain 
the concept of effective faces: simply put, only observable faces are considered 
effective. As shown in the figure below, FaceS is the overlapping face between Voxel A 
and Voxel B. If B is an empty voxel or a semi-transparent voxel (i.e., Opacity < 1), 
FaceS can be considered visible and is thus an effective face. For each non-empty 
voxel, if there are effective faces and some of these faces are empty, they are added 
to a buffer waiting for subsequent repair processing.
Specifically, there are two options for repair. Repairs will prioritize searching and 
patching within a 3x3 grid of faces based on the plane the face resides in, retrieving 
its Albedo and Normal for filling. Another simpler and more direct option is to directly 
take the weighted average of the Albedo of other faces belonging to the same voxel 
as this face's Albedo, and the Normal can be obtained by rotating the Normals of 
other faces (or simply selecting the orientation of the voxel face as the normal 
direction—the effect is basically correct and without light leakage).
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BRICKLIZER

• Overview

• Brick Generate & Update

• Brick Voxelizer

• Lighting Injection

• Brick Tracing

• Optimization
− Fix holes

− Brick Reprojection

• Blue box is current frame map box

• Yellow box is last frame map box

During camera movement, if it is detected in a frame that the updated bounding box 
exceeds the range of the mapped bounding box, the corresponding reprojection logic 
needs to be executed. On the CPU, all Bricks are traversed, and those that exceed the 
new mapped bounding box are deleted. At the same time, basic parameters such as 
AtlasOrigin need to be updated. On the GPU, only the corresponding BrickTexture and 
HDDAStruct need to be updated. An offset is calculated for the remaining Bricks and 
passed as a parameter to the ReprojectionPass, shifting the corresponding Bricks 
accordingly.
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FINALGATHER

• Screen Probes
− Coverage ( 16 x 16 Pixels)

− Data Structure

• Radiance Atlas ( 8 x 8 pixels,64 directions)

• Probe Normal Atlas

• Probe Depth Atlas

• History Probe Data

− Radiance,Normal,Depth

• Mipmap Probe Data

− Generate 

• Virtual Screen Probe Group ( 2 x 2 Screen Probes)

• Only one Screen Probe generated per frame for per group

• Reprojection

• Gather Lighting from Bricks

• Fullscreen Lighting

• To simplicity,we use the follow data in diagram:

• 16x16 pixels per probe

• 4x4 screen probes

After introducing how to implement voxelization using bricklizer, we move on to the 
illumination sampling stage. As mentioned earlier, we utilize a screenprobe approach 
similar to lumen for efficient illumination sampling. As shown in the diagram, we 
segment the screen into 16x16 blocks, and generate a screenprobe on each block. 
Each screenprobe records radiance information in 64 directions. In addition to 
radiance information, we also generate normals and depth information for the 
screenprobe. Furthermore, we keep track of the screenprobe's relevant information 
from the previous frame. There is also mipmap data for the probes, and I will explain 
its purpose later. Our approach to calculating screenprobe data differs from lumen, as 
we group 2x2 screenprobes into a virtual group and randomly select one probe from 
this group for computation each frame, thus reducing the computational load to 
one-quarter of lumen's.
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FINALGATHER

• Screen Probes

• Reprojection
− Project history probes to current frame

− Find best geometric correlation probe

• Gather Lighting from Bricks

• Fullscreen Lighting

• Prior method:

• Project current to history

• The probability of adjacent probes 
using the same historical frame is 
high.

• Our method:

• Project current to history

• The probability of adjacent probes 
using the same historical frame is 
lower.

To further reduce the computational cost of calculating the radiance of screenprobes 
per frame, we maximize the utilization of historical screenprobe radiance data. 
However, there are two modes of reprojection: one is to project the current frame's 
screenprobes into historical frames to find neighboring screenprobes, and the other is 
to reproject historical frame's screenprobes into the current frame and use the 
geometrically closest historical frame to fill in the current frame. We found that this 
method results in a lower conflict rate for screenprobes compared to the former 
approach. For screenprobes that fail reprojection, we proceed to the next step: 
radiance data collection and computation.
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FINALGATHER

• Screen Probes

• Reprojection

• Gather Lighting from Bricks
− Tracing With HDDA

− Gather Lighting Data from best voxel face

• Fullscreen Lighting

After determining which screenprobes require recalculation of radiance data, we cast 
rays into the scene using the HDDA algorithm to our voxelized representation, 
"Bricks," to obtain illumination data. Unlike traditional voxelization that only stores 
illumination data on voxels, we store separate data for each direction of the voxel. 
Additionally, we apply the invalid face elimination logic described earlier in the 
bricklizer description. This allows us to obtain different illumination data when rays 
hit the voxel from different directions. For example, a thin wall has different 
illumination on its indoor and outdoor sides.
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FINALGATHER

• Screen Probes

• Reprojection

• Gather Lighting from Bricks

• Fullscreen Lighting

− Interpolating from 2x2 Screen Probes

− Fallback to upper level mipmap Screen Probes

• Small blue point is current pixel

• Dark red regions are holes

• Light red region are upper level mipmaps

The illumination data we calculate is based on screenprobes, but ultimately, we need 
illumination data for each pixel shader. The approach we use is relatively simple: we 
find the four screenprobes surrounding the current pixel and calculate the pixel's 
illumination information based on the weighted average of the geometric 
information. However, you may have noticed that we mentioned earlier that only 
one-quarter of the screenprobes in the virtual group are computed each frame, which 
means some screenprobes may not have actual illumination data and may fail 
reprojection. In such cases, the mipmap of the screenprobe comes into play. We 
search for appropriate screenprobes in the mipmap hierarchy and interpolate them to 
the current pixel point.
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HOW RESULTS TURNED OUT

RESULTS

I am done with the detailed introduction of our algorithm, now let's take a look at 
how the test result in the real world may look like.
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TEST RESULT DATA

• Memory

− 28 MB

• 512 x 512 x 128

• Lighting

− Radiosity Off

• 0.5 ms

− Radiosity On

• 1.5 ms

• Voxelize

− 15 bricks

− Cached

• 0 ms

Algorithm Memory Peformance Coverage 
Area

Lumen >280MB - 200m

VXGI ～50MB ~2.0ms 256m

BRICKGI ～30MB ~2.0ms 512m

Here, we have used the 2023 flagship mobile devices to test VXGI and BrickGI, while 
having Lumen on PC as the reference. As you can see, our BrickGI only needs less than 
30MB of memory for a spherical volume with a radius of 512 meters. In contrast, 
Lumen and the traditional clipmap approach take more than 50MB. Furthermore, in 
terms of performance, we can complete all the GI calculations within 2ms.
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TEST RESULT DATA

• Memory

− Lumen

• > 282MB

− Clipmap Method

• ~50MB

− Our Bricklizer Method

• ~30MB

• Lighting

• Voxelize

Texture Size Format Memory

AlbedoTexture 64x256x192 R32_UINT 12MB

NormalTexture 64x256x192 R32_UINT 12MB

EmissiveTexture 64x256x192 R11G11B10_FLOAT 12MB

LightingTexture 64x256x192 R11G11B10_FLOAT 12MB

OpacityTexture 64x64x4x32 R8 512KB

VoxelVisBuffers 64x64x64x6 R32_UINT 3MB

Total / / 51.5MB

• 4 level clipmaps memory usage:

Here is the detailed memory usage of the voxelization method based on clipmap, 
which is approximately 50MB.
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TEST RESULT DATA

• Memory

− Lumen

• > 282MB

− Clipmap Method

• ~50MB

− Our Bricklizer Method

• ~30MB

• Lighting

• Voxelize

Texture Size Format Memory
BrickGroupBitMask 32x64x8 R32_UINT 64KB

BrickTexture 128x128x32 R16G16_UINT 2MB

BrickBitMask 64x256 R32_UINT 16KB

BrickOpacityAtlas 512x1024x8 R8 2MB

BrickMappingAtlas 512x1024x8 R32_UINT 8MB

BrickVisFacesAlbedoAtlas 1024x1024 R32_UINT 4MB

BrickVisFacesNormalAtlas 1024x1024 R32_UINT 4MB

BrickVisFacesLightingAtlas 1024x1024 R11G11B10_FLOAT 4MB

BrickVisFacesEmissiveAtlas 1024x1024 R11G11B10_FLOAT 4MB

Total / / 28MB

• Bricklizer voxel method memory usage:

Here is the detailed memory usage of our voxelization method based on the latest 
bricklizer technology. It consumes approximately 30MB of memory, and the scene 
coverage is twice that of a 4-level clipmap, reaching up to 512 meters.
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IS THIS THE END OF OUR TECH ?

CONCLUSION

Let‘s wrap up the advantages and possible future improvements of our algorithm.
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CONCLUSION

• Advantages

− More efficient data storage rate and lower memory usage

− Higher-precision scene representation

− More friendly to the GPU cache

− No need with hardware ray tracing

− Fewer ray tracing calculations

• Disadvantages

− Not friendly to mirror reflection

− Not friendly to the changes of huge object

• Future Plan

− Reduce overdraw

− Many lights injection

− Texture compression

− For the Mean Squared Error Metric (MSME) evaluation of Radiosity

The advantages of the system include a more efficient data storage rate that leads to 
lower memory usage, enabling a higher-precision representation of the scene. 
Furthermore, it is designed to be more compatible with the GPU cache, eliminating 
the need for hardware-based ray tracing and thus reducing the number of ray tracing 
calculations required.
However, there are also some disadvantages, such as its inability to handle mirror 
reflections effectively and difficulties in adapting to changes with huge objects. 
Looking ahead, our future plan involves implementing strategies to reduce overdraw, 
incorporating multiple light injections, and compressing textures. These 
enhancements will be particularly useful when evaluating Radiosity using the Mean 
Squared Error Metric (MSME), aiming to improve both performance and accuracy.
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THANKS

Thank you for your time. Feel free to reach out to me if you have any further 
questions.
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