
Hi, I am Sebastian Aaltonen. Today I am going to be talking about the work we have 
done in the past year to improve the visual fidelity of HypeHype’s renderer.  
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HypeHype is a social mobile game development platform. Games are created on the 
phone using a touchscreen user interface. 

HypeHype has a feed similar to Tiktok for browsing though all the user created 
games. Games load instantly when you swipe the feed and a replay starts playing 
immediately. This is a familiar interface for social media video app users, and it gives 
you instant information about the game. When you swipe over a multiplayer game, 
you see an ongoing game session and you can instantly join it. There’s no waiting. 

HypeHype has a full game editor inside the application. Game logic is implemented 
using a node based visual scripting system. Game creation is also social. Spectators 
can watch creators and in multiplayer games, spectators immediately become players 
when the creator enters test play mode. Allowing very fast iteration time for 
multiplayer creation. Games are built from small objects, combining them. This is 
called kitbashing and results in dense soup of objects, which we must render 
efficiently. The most complex games have over 100,000 objects in them.

Instant loading games and limited 10MB storage make it impossible to store baked 
lighting to the game binary. We must employ a fully real time lighting solution. It must 
handle both direct and indirect lighting. Limited storage also means that we need to 
innovate on the mesh and material storage to make high fidelity content fit to the 

What is HypeHype?

Feed EditorMultiplayer Social
Instant loading games,

<10MB, replays
Visual scripting, collaborative edit, 

spectators, instant test play, 
kitbashed content!

8 players Chat, replays, 
leaderboards…

→ Real time (indirect) lighting, innovate on mesh/material storage



budget.



HypeHype is targeting mainly touchscreen devices, such as tablets and phones. PC 
and Mac versions exist too, but most of our customers are using touchscreen devices.

I have a console background at Ubisoft. Let’s take a look at popular phones today and 
compare them to previous generation consoles. Xbox 360, PS3 and Nintendo Switch 
are today roughly equal to mainstream Android phones. This was the first generation 
of consoles capable of running physically based lighting and a full post processing 
stack. This was a massive fidelity improvement back in the day and is today 
achievable on a cheap 150$ Android phone. This is a really important market for a 
mobile gaming platform like HypeHype, since young audiences generally use cheap 
phones.

High end phones today already surpass PS4 theoretical ALU performance, but in 
practice can’t sustain that kind of compute and bandwidth heavy workloads. It’s better 
to run a lighter workload to avoid making users phones hot and draining their battery 
too fast.

HypeHype also needs to support older <99$ Android phones. These phones are still 
super popular in Philippines and similar countries.
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We are targeting Xbox 360 generation visuals, so let’s compare a mainstream mobile 
phone and Xbox 360 to see how they compare to each other.

Xbox 360 used a unified memory design with a small EDRAM scratchpad for the 
GPU. This design is quite similar to mainstream mobile phones. We have slow shared 
main memory, and fast tiny on-chip storage for render target and Z-buffer. Blending 
and overdraw doesn’t consume memory bandwidth. Render target must be resolved 
to main memory before it can be sampled in further passes. This resolve operation is 
expensive. Loading resolved uncompressed textures from memory is also expensive. 
To achieve best possible performance, you want to combine as many render passes 
as possible to avoid memory roundtrips. 

Since memory loads are slow, these GPUs lean on uniform buffers for loading big 
data such as matrices. Xbox 360 and all mainstream mobile phones have some 
hardware mechanism for preloading uniform data to on-chip memory for fast access. 
These data paths are optimized for uniform address loads. Indexed memory loads 
with per-lane address are significantly slower and should be avoided as much as 
possible. 

The biggest difference between mobile GPUs and Xbox 360 is tiled deferred 
rendering. Mobile GPUs have more efficient hidden surface removal, but need to write 

Mainstream Mobile GPUs Compared to Xbox 360

GPU

On-chip
render target

SLOW
shared

RAMresolve

sample / loadZ-buffer
Blend
Overdraw
Uniforms

Improvements: Framebuffer compression, ASTC textures, double rate fp16, 
32 bit packed HDR render target formats. (100% mainstream coverage today)

Still not great: Leans on preloaded uniforms. Indexed loads are slow. 
Compute is lacking: no DCC for compute writes, limited wave ops, possibly 
emulated groupshared memory, no 64 bit atomics, etc…

BOTH
Prefer uniform data
Pack data tightly
Combine passes
VS + PS over compute

MOBILE
Minimize varyings
ALU over lookups (fp16)
Utilize (lossy) DCC
ASTC

Similarities:

On-chip 
uniforms

Differences: VS→PS varyingsVS→PS varyings Xbox mobile

→ Traditional pipeline is optimal for performance



vertex shader varyings to memory. Optimizing varying size is crucial for performance. 
16 bit floating point helps a lot.

Today all mainstream mobile GPUs support ASTC texture compression, which 
provides better quality and data compression than DXT5 back in the day. And we 
have framebuffer compression, reducing the bandwidth cost of memory roundtrips 
between passes. And nowadays we also have robust support for 32 bit packed 
floating point formats for HDR render targets. These are all very nice improvements.

But modern PC and console workloads are still not a perfect fit for mobile: Preloaded 
uniforms are fine for classic workloads, but modern workloads need indexed loads 
and those are slow on mainstream Android GPUs. Compute shader performance is 
also lacking: There’s no framebuffer compression for compute shader outputs, wave 
ops have poor coverage, some GPUs emulate groupshared memory and 64 bit 
atomics are missing. GPU-driven rendering is not a great for mainstream phones 
today. Traditional Xbox 360 techniques perform better.



Last year at SIGGRAPH I was talking about our graphics backend rewrite. All platform 
specific code was replaced with new code. We built an extremely efficient thin 
platform API which wraps Metal, Vulkan and WebGPU and built a new shader system 
leaning on SPIRV-Cross. 

Today I am going to talk about our visual side. The focus will be on GPU side. I am 
going to be talking about our new render pipeline, implementing physically based 
rendering and modern post processing. 

The biggest topic I want to discuss, again this year, is performance. Our team spent 
around 50% of our time optimizing code. 
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When you are targeting mainstream mobile phones, performance is a crucial aspect. 

We want to ensure that we are optimizing for the right target. To ensure this, we 
gather a lot of analytics data. 80% of our customers use cheap Android phones. We 
want to make sure that HypeHype runs flawlessly on these phones. Running at 60 fps 
is important for us, since game play is the king. Visuals should never make game play 
worse.

Since there’s over 5x GPU performance difference between current 150$ mainstream 
Android phone and older <99$ phones, we have to compromise to improve our reach 
on some markets. We detect phone GPU performance at startup. If GPU is slow, we 
drop internal rendering resolution to 2x2 lower and lock frame rate to 30 fps. 

It’s important to notice that most creators are also using mainstream mobile phones. 
They can’t author or test special high end content. Content has to scale automatically 
to high end phones.

The performance of our code dictates how many graphics features we can implement. 
Important to learn to say no when artists and game designers ask for new features. 
Time boxing helped during initial planning. We have already implemented Xbox 360 
and PS3 rendering technology back in the day. This knowledge helps in time boxing 

Performance Matters

• Optimize for the right target
– 80% of our customers have <200$ phones. Kids have old/cheap phones
– Target: 150$ Android (~Xbox 360) needs to run full pipeline at 60 fps (playability is the king)
– Compromise on old <99$ phones: 30 fps + 2x2 lower res rendering → 8x reduction in pixels
– Creators also have mainstream phones! They can’t author special high end content!

• Performance dictates the feature set
– Can’t do all we want: Learn to say no!
– Time boxing helps during planning: Everything must fit in 16.6ms budget!
– Prefer techniques with fixed cost. UGC kitbashed content is unpredictable
– Optimize to fit more features

• Preferred: Shader code optimization = free performance!

• Simplify techniques, trade-off quality, add limitations

• Last resort: Cut features if they cost too much

• 50% of rendering team’s time spent optimizing + profiling!



our intial feature set. 

UGC kitbashed content is highly unpredictable and we can’t test it or quality control it. 
It’s preferable to aim for techniques that have fixed cost independent of the scene 
complexity. When choosing between two techniques, prefer techniques with slightly 
higher base cost, but lower added cost based on scene complexity.

When adding new features, we need to free performance to fit the new feature. 
Preferred way is to optimize existing code. This is free performance. Today our 
existing code is already very well optimized, so we have to trade-off with quality and 
add limitations to techniques to keep their cost lower. New features that cost too much 
can’t be shipped. The last resort is to cut the feature, preferably early in the 
production. 

Our rendering team has spent over 50% of our time during this year analyzing, 
profiling and optimizing. 



Let’s talk about our new rendering pipeline. 

Each box in this diagram represents one render pass. We have tried to minimize the 
number of render passes to minimize the memory roundtrips which are expensive on 
mobile. 

We have a deferred rendering pipeline, so we start by rendering a compact 64 bit 
G-buffer. 

Then we downsample and linearize the scene Z-buffer. Linear Z buffer is 16 bit to 
save bandwidth. SSAO and bilateral blur passes consume linear Z and produce 8 bit 
SSAO contribution. 

Shadow map pass follows. This is a single pass cascaded shadow approach. All 
shadow maps are in the same atlas, we change the viewport rectangle for each 
shadow cascade to fill the atlas. This way we only need one render pass, and there’s 
no stalls between the cascades. Our shadow map is 16 bit to save bandwidth.

Deferred lighting pass consumes the shadow map, SSAO and G-buffer to provide a lit 
HDR image in 32 bit packed float format. Transparencies and particles are rendered 
on top of the lit scene in the same render pass. 

The New Render Pipeline
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Bloom passes start at quater resolution, and go down the mip chain to blur recursively 
and up again to combine the results. This classic approach is a great fit for 
mainstream phones, but it starts to have occupancy issues already on high end 
phones. 

Post processing uses a single pass approach to reduce memory traffic. All post 
effects are implemented in a single shader. Post processed image is then upscaled to 
native resolution and UI is rendered on top in the same render pass. On high end 
phones at 100% render scale, we render post process directly at start of the UI pass 
at native resolution to avoid having an extra render pass. 



This is a profiler capture (ARM Streamline) on a 3 year old 99$ Android phone. This is 
our min spec phone and it has a GPU that’s around 5x slower than iPhone 6s (9 year 
old flagship).

As you can see, we manage to (barely) hit 60 fps on this device with the full render 
pipeline. 

The first thing you see is vertex processing in the top. Our vertex processing overlaps 
the previous frame to avoid stalling the pixel pipeline. On low end phone the vertex 
processing can be active for around 50% of the frame, making overlap super 
important. In Vulkan it’s crucial to setup barriers to allow vertex work overlapping 
previous render passes. You will lose around 15% of GPU performance if you fail to 
do that.

The most important thing to see here is that Shadows and G-buffer passes. These are 
the only passes that have varying cost. Remaining frame is fixed cost full screen 
render passes. This is super important for kitbashed user generated content. We want 
to avoid frame time fluctuation at all costs. 

3 year old 99$ phone timings (Mali G57 MP2) - 60 fps!

← Vertex work overlaps previous frame →
Important to setup Vulkan barriers correctly!
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I will now talk about all our render passes: Deferred rendering will be the first topic.

Mobile games tend to use forward rendering to save memory bandwidth. But forward 
rendering has issues with modern rendering. We need depth buffer before lighting for 
SSAO. Z-prepass is extremely expensive with dense kitbashed geometry. It would 
double our draw call count and double our triangle count. We simply can’t afford that. 
Additionally, Z-prepass doesn’t help mobile TBDR renderers much at all, due to their 
TBDR architecture. 

We also noticed that our geometry tends to be quite dense. LODs don’t work that well 
with kitbashed content, as we can’t optimize across object boundaries. We measured 
on average 60% extra pixel shader waves due to quad overdraw. This pixel shader is 
heavy as it implements our new physically based shading, lighting and shadow 
sampling techniques. With deferred lighting, we have fixed amount of lighting waves, 
one thread per pixel. Independent of the scene complexity. We don’t want to pay for 
lighting overdraw.

Next we need to solve the G-buffer bandwidth cost. We really wanted to fit the 
G-buffer two two 32 bit render targets. The first G-buffer uses a 10 bit RGB format, we 
store octahedral normal in the two first channels and 10 bit material ID in the third. 
This way we can support up to 1024 materials, which is fine for small mobile games. 

Deferred Rendering: G-buffer

• Motivation
– SSAO requires depth buffer
– Dense kitbashed geometry

• Z-prepass doubles draw call count and triangle count 😦
• Poor quad utilization in forward PBR lighting pass (+60% pixel waves) → more fluctuation!

• Solution: Deferred minimizes geometry based fluctuation. Fixed pixel wave count in lighting!

– Future: Optimized light & shadow culling
• Z-buffer = all visible surfaces = all shadow and light receivers

• Compact G-buffer
– G-buffer A: RGB10A2

• Octahedral normal: 10+10 bits

• Material ID: 10 bits – 1024 material array (lighting pass) → deferred texturing

• Mode: 2 bits

– G-buffer B: RGBA8 – Mode specific data (often 0,0,0,0 → DCC)

G-buffer
RGB10A2

RGBA8
D32F

0.5ms faster!



The 2 bit alpha channel serves as mode selector (4 modes). Our secondary G-buffer 
stores mode specific data. Mode 0 does deferred texturing and doesn’t even need the 
secondary G-buffer. This compresses very well with framebuffer compression.



HypeHype had a 52 byte fp32 vertex format. We wanted to save storage and 
bandwidth cost, so we designed a new format. The main goal was to make the format 
as small as possible, but without significant ALU cost. We also needed unpacked fp32 
vec3 position data for physics and editor. 

HypeHype’s meshes support up to 4 materials. Each triangle belongs to one material. 
This was implemented using RGBA8 vertex colors. Color was decoded in vertex 
shader and we got a number between 0 and 3 as result. In the new format we store 
the local material index directly as a 2 bit value. 10 bit RGB values are used to store 
normal and tangent and their 2 bit alpha channels are used to store material ID and 
bitangent sign. Bitangent is calculated using cross product as usual. We store the UV 
as 16 bit normalized value scaled to [-8,+8] range. This supports up to 16x UV repeat 
without any tricks. If UVs repeat more, our mesh preprocessor can add extra UV 
seam to support unlimited tiling. 

Position data is stored in a separate position stream. This is beneficial on mobile 
TBDR architectures as they run a simplified position-only vertex shader for binning. 
Separate position data improved cache utilization there. Similarly separate position 
stream helps with shadow map rendering.

Packed vertex format provided us on average 10% GPU frame time improvement with 

Packed vertex format
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UV

RGB32F
normal

RGBA32F
tangent + sign

RGB10A2
normal, matID

RGB10A2
tangent, sign

RG16
UV [-8,+8]

Optimized: 24 bytesOld: 52 bytes

RGBA8
material ID

RGB32F
position

RGB32F
position

Motivation: Saves storage and bandwidth
Goals: Cheap decode, fp32 vec3 position data for editor and physics, needs to handle 4 material slots

Learnings: norm vs float = 16x min precision [-1,+1]
Size: 2.16x smaller size
Performance: 10% faster GPU frame time
Quality: Practically identical

Position stream
TBDR, shadows

1:1 4096x4096



practically identical quality. 2.16x smaller vertex size saves memory and game binary 
size, which are both crucial for our platform.



The next topic is geometry instancing and material data.

I noticed quite early during prototyping that indexed memory loads are very slow on 
older low end mobile phones. On Mali G57 MP2, I measured that loading a single 128 
bit float4 from programmable per-lane address costs 0.5ms in a native resolution full 
screen pixel shader pass. HypeHype’s original main forward render pixel shader was 
doing five of them. That’s 2.5ms. Of course we can hide this memory cost by adding 
ALU, but it can easily become the bottleneck.

Geometry instancing is a nice way to reduce CPU and driver cost, but it always adds 
some GPU cost. Majority of this extra cost is caused by fetching matrix and material 
data using indexed loads instead of constant address loads. Each indexed load has to 
be executed per pixel, there’s no preloading to on-chip storage. 

Our instancing vertex shader data layout is packed in 6x float4s. 6 memory loads give 
us the object matrix, normal matrix and material IDs required for shading. Object 
matrix is a 4x3 matrix, which saves 25% loads (and registers) compared to 
unoptimized 4x4 matrices. Normal matrix is a 3x3 matrix. We store it as 4x3 due to 
alignment, but reuse the padding for various purposes, including material IDs. 

In one 32 bit integer we pack four 8 bit material IDs. This maps our local mesh 

3x3 normal matrix
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specific 2 bit material index to a global material index. Selecting the correct material is 
simply implemented as bit shift and mask. Which is extremely fast. We don’t need an 
additional indexed load to select the material index. The resulting material index is 
stored in the G-buffer.

The lighting pass reads the material index in the G-buffer and indexes the global 
material data array accordingly. We bitpack eight 16 bit floats inside a single 128 bit 
uint4. This way we can load the whole material using a single indexed load. GLSL has 
an intrinsic for unpacking two half floats from one integer. This is free on many GPUs, 
as they store 16 bit values in upper/lower half of a 32 bit register.

On CPU side we use NEON vector instructions to convert our material data to fp16 
and write it to GPU once a frame. Our draw calls don’t do any material processing 
anymore. This saved around 1ms of CPU time in complex scenes. 



Our initial main goal for Physically Based Rendering (PBR) pipeline was to improve 
the visual fidelity. People wanted to start making content that looked more realistic 
and could bring more mature audiences to the platform. But it’s important to note that 
PBR is not just for photorealistic graphics, it also works fine for cartoon-style graphics, 
as Pixar and Disney and others have proven multiple times in the past decade. 

PBR helps artist workflows and iteration time. DCC tools render the same PBR image 
as our engine. Artists no longer need to import their assets to engine to see their 
appearance in games. We did several validation passes against popular DCC tools 
and managed to match the visuals very closely. Having a ground truth comparison 
point during development was very useful.

HypeHype has an asset library in our cloud server. This library is shared between all 
games, and users can import new assets to it. In our old ad-hoc renderer the light and 
ambient colors were defined in each material. For example if you wanted to make a 
sunset scene, you would make the material ambient colors yellow. This made it 
cumbersome to load these same assets into another scene. PBR solves the content 
portability issue, because objects, materials and the lighting environment are fully 
separated concepts. Objects and materials simply look correct in all lighting 
environment. Which made it much easier to share content between games.

Physically Based Rendering (PBR)

• Improved visual fidelity
– An iterative path towards Pixar quality visuals
– Easy to validate against DCC tools and ground truth

• Asset library (cloud server)
– Old per-object lighting/ambient worked only in one environment
– User had to tweak each material by hand to make it fit to their game
– PBR assets work in all lighting conditions. Drag and drop

• Visual styles and remixing
– Remixing games is a core feature of HypeHype. 
– Visual remixing should be fun and easy!

• Future: Content portability across platforms
– Internet asset libraries, GLTF2, AI generation…



We also wanted to add quick visual remixing features similar to video platforms such 
as Tiktok. Their video filters are super popular. Our visual styles include post process 
effects, direct lighting, ambient lighting, fog and background settings. Users can easily 
remix existing content by changing the visual style or they can edit a theme and 
modify each separate setting manually.

In the future we want to improve content portability across platforms. There’s lots of 
assets in the internet and AI will generate more quickly. GLTF2 and similar formats 
are important. All third party tools use PBR so we need to be compatible.



Our PBR lighting pipeline is built from standard primitives on purpose. This is to 
ensure compatibility. D = GGX, G = Smith, F = Schlick. 

Since the PBR lighting math is complex, we spent a lot of time optimizing it. Running 
all PBR math as fp16 is important on mobile as fp16 runs at double rate. Porting the 
lighting math to fp16 was surprisingly easy. The biggest issue was the GGX formula, 
which had precision issues at highlights. We borrowed Filament’s idea of using 
Lagrange’s identity in the GGX formula to make it more stable for low precision 
floating point execution. This added a few instructions (cross product), but allowed us 
to keep all lighting math in fp16 without any conversions. We had to clamp roughness 
and HDR output to avoid underflows and overflows, but this wasn’t a big issue. fp32 
lighting with fp16 render target already requires clamping.

During the production we ran into various fp16 precision issues. fp16 pipeline requires 
more testing and more tweaking during the whole project to stay in good shape.

For indirect lighting we use oct-maps. These are similar to cube maps, but can be 
packed in NxN textures. HW filtering is possible if you add a seam on the outer 
edges. Advantage of this is faster execution on old PowerVR GPUs. Those had ¼ 
rate cubemap filtering with explicit mip level. Since we run a whole game editor in the 
device and we generate these oct-maps at level load, we also cared about oct-map 

Lighting

• PBR lighting
– Basic stuff: D = GGX [Walter], G = Smith, F = Schlick
– 100% 16 bit float (2x rate)

• GGX with Lagrange's identity [Filament]

• Clamp roughness (underflow), clamp output (overflow)

• 16 bit float issues randomly surface → fix

• Indirect lighting: Oct-maps [Praun]
– Similar to cubemap but 8 faces, HW filter with borders
– Advantages

• PowerVR = ¼ rate cubemap (explicit mip) 😭
• Process all faces in single pass, cubemap needs 6 passes

• Supports standard texture atlasing (mix sizes)



generation, lighting and convolution performance. With oct-map we can run all these 
steps in a single render pass. Cubemap would require 6 passes, one per face. It’s 
also possible to atlas oct-maps in standard 2d texture atlases, which matters in 
WebGL2 (it doesn’t support cubemap arrays). 



Let’s talk about our local light system, which is shipping later in the fall. 

We are binning lights to tiles on CPU side to 32x32 tiles. 64 bit light mask per tile. 
CPU is doing software raster to fill the tile map. The whole tile map data fits in CPU 
L1$ so this is highly efficiently done using a single CPU thread.

Rendering: Render all tiles with the same light set (same bitmask) at once in a single 
draw call. Bump allocate new tile set lights to UBO between draw calls, and change 
UBO binding start offset.

There’s one shader permutation for each supported light count & type permutation. 
This way we can read light data from fixed UBO address, avoiding slow indexed load 
paths. Let’s say we compile lighting shader permutations for up to 8 point and 8 spot 
light sources. If there’s more lights that 8 in a tile, then we run remaining lights in the 
next draw call using additive blending. TBDR architectures to blending in tile memory, 
so this doesn’t cost any extra memory bandwidth for render target writes & reads. 
This also limits the register bloat in the unrolled lighting shader. Complex shaders can 
be problematic for low end devices.

There’s a Z-early out min/max stored for each light. If the pixel is not in these bounds, 
then the light is skipped. It’s common that all threads coherently skip the same light 

Future: Local Lights

• CPU: Bin lights to tiles
– 32x32 tiles
– 64 bit visible lights bitfield per tile
– 600x720 → 50x23 tiles → 9KB (<L1$)

• Rendering
– Render all tiles with same lights in single draw call
– Bump allocate light data to a big UBO (offset binding)

• Shader
– Different shader permutations for each light count & type
– Fastest possible UBO access (no dynamic indexing)
– Multipass if light count > limit (on-chip TBDR). Limits register bloat and permutations
– Early out: Light source Z min/max test in shader



sources (behind a wall for example). In the future we do compute pass to cull lights 
based on low res min/max Z-buffer. This is one of the reasons we want Z-buffer in 
memory before the lighting.



Since we can’t bake indirect lighting, we need a runtime solution for it. Ambient 
occlusion is a great starting point.

I ended up implementing many different SSAO algorithms before I found a solution 
that suited our needs. Let’s go though a brief history of SSAO algorithms next. 

Crytek popularized SSAO in video games. Their original technique was sampling N 3d 
points randomly distributed around the surface. For each sample they projected it in 
NDC and compared the point Z value and the Z-buffer value at the point location. If 
the sampling point was closer, that sample was considered visible, otherwise it was 
considered hidden. This gives us a single bit of data per each texture sampling 
operation. Then we count the number of visible bits and divide by sample count to get 
our visibility approximation. 

People quickly noticed issues in this original algorithm. The first improvement was to 
use pixel’s normal vector. G-buffer already contains the normal vector, so we can 
simply use that. Samples below the normal vector (negative dot product) are mirrored 
on the top hemisphere. This both improves the quality and performance. Halos 
caused by sampling outer edges beyond the surface was fixed and we got double 
efficiency per sample.

SSAO: History

Crytek [Mittring]
• Doesn’t use normal
• Uniform sampling pattern
• 1 bit result per sample

Use Normal
• Mirror samples below normal
• Doubles sample efficiency
• Removes halo on outer edges

Better Sampling + Mips
• Take cosine lobe into account
• Similar to importance sampling
• Z-buffer mips (longer distance)

Occluded 
incorrect 
samples7/16 samples = 43% visibility mips



Later various authors further improved this technique by improving sampling pattern. 
More samples closer to normal direction resemble cosine lobe importance sampling, 
and provide better approximation. Mip maps were added to Z-buffer to improve 
memory access pattern for far away samples. 

Still none of these improvements could fix the issue of counting visible samples that 
are occluded from the surface’s point of view. Narrow surfaces leaked light through 
them.



Horizon based ambient occlusion (HBAO) solved the light leaking issues. It traces N 
horizon lines in screen space instead of relying on random sampling. Each line is 
stepped with N linear steps. For each step the Z-buffer is sampled. Opening angle is 
calculated using the Z-buffer depth. And minimum (most restrictive) angle is used. 
This is a big efficiency improvement over the 1 bit per sample in the previous slide. 
Now we get a full angle from each sample. Once the line trace is done, we simply use 
the opening angle as our visibility estimate.

The most advanced HBAO-style algorithm is called GTAO (ground truth ambient 
occlusion). They improved the algorithm in many ways. Fixed size line sampling steps 
were replaced with x^2 distribution, which sampled more steps closer to the point, 
where the depth difference has higher impact on the angle. Visibility estimate is 
calculated by projecting the normal vector to the min/max angle space, where analytic 
cosine integral is used to calculate properly weighted integral. GTAO also introduced 
two optimizations over HBAO. They used Z-buffer mip levels just like the most 
advanced point sample algorithms (last slide) and they traced each line segment to 
both directions at the same time. Negative direction simply requires negating the 
screen space sample offset, which is free to calculate. This way we reduce various 
line setup overhead costs to half.

SSAO: Horizon Based Techniques

HBAO [Bavoil]
• Trace N horizon lines
• Step along line (linear steps)
• Sample = height
• Take max horizon angle
• AO = opening angle / directions

GTAO [Jimenez]
• x^2 line sample distribution
• AO = analytic integral (cosine lobe)
• Optimization: Both line sides at the 

same time (negate direction)
• Z-buffer mips

analytic
integral

Ignore 
occluded
samples



Our ambient occlusion algorithm is based on GTAO. I wrote our algorithm from 
scratch since I wanted to get full knowledge in order to micro-optimize it. 

The first optimization we did was tracing a full cross in the inner loop (4 directions) 
instead of 1 (HBAO) or 2 (GTAO). This further reduces the line setup costs. 
Calculating perpendicular line is free (-y, x). 

I implemented 2x2 quad neighborhood data sharing and it was great for reducing the 
noise. I implemented this using chained fine derivatives, which worked fine in Vulkan 
and Metal. However GLES3 (we still have WebGL2 backend for web) doesn’t support 
fine derivatives. GLES has a hint for requesting fine derivatives, but ARM and 
Qualcomm drivers simply ignore this hint. As a result, we still haven’t shipped this 
quality and performance optimization.

Our GTAO is 100% fp16 code and we use ALU based noise instead of a texture 
lookup. This is because texture samplers are slower on mobile. SSAO is running at 
half resolution and we do only 3 samples per line segment. This is possible because 
each sample gives us an angle (instead of 1 bit result). In total we have 12 samples 
for the cross and we run one cross per pixel. 4x4 spatial noise for angles and offsets 
provides good enough 64 direction sample coverage. 4x4 bilateral box blur is used to 
blur the result. Since the 4x4 noise region is repeating, box blur at any location 

SSAO: Our Custom GTAO

Details
• Optimization: Trace “+” shape at once: (-y, x)
• Share samples with dFdxFine inside 2x2 quads → GLES driver issues 😢
• Micro-optimized 100% fp16 inner loop
• ALU based noise, staggered sampling (samplers slower on mobile)
• SSAO runs at ½ resolution
• Only 3 samples per line segment → 12 samples per cross
• 2 mip Z-buffer: Closest sample = mip 0, others = mip 1
• 4x4 spatial noise (angles/offsets) → 64 directions
• 4x4 bilateral box blur + bilateral upscale

Future
• Top down Z-buffer for large scale AO (sky visibility)
• Screen space / top down specular occlusion and approx GI

mip 0→1

Bilateral upscale     on  off        



contains all sampling directions.

Bilateral upscale is very important for quality when upscaling the SSAO. The images 
show edges looking half res without bilateral upscale. Our bilateral upscaler simply 
does one gather4 at the direction of the 2x2 lower resolution edge, resulting in always 
4 different values. We pick pixel’s own value if available and fallback to the closest 
one of the neighbors.

In the future we want to add a top-down Z-buffer based long range stable AO to 
approximate sky visibility better. We will also be experimenting using our GTAO data 
to implement specular occlusion and some screen space GI approximation.



Post processing is a single pass design to avoid memory roundtrips. It’s 100% fp16 
code. 

Bloom uses physically based blend (instead of additive to remain energy conserving). 
Tonemap is based on optimized ACES curve. 

Color grading uses a 16x16x16 LUT. We generate the LUT on CPU side whenever 
post process sliders change. We support brightness, contrast, saturation, tint, 
shadows/midtones/highlight, etc, etc settings. And we also have presets for users 
such as Sepia and Sin City.

Vignette is added on top at the end of the shader. 

Post processing – Single Pass

Bloom
• Combine bloom mips
• Physically based blend

Tonemap
• ACES and linear
• fp16 optimized

Color grading
• 16x16x16 LUT
• Brightness, contrast, 

saturation, tint, 
shadows, midtones…

• Presets: sin city, 
sepia…

Vignette
• Darken / brighten edges



Spark: Real-time GPGPU ASTC/BC7 Compressor 

• 10MB game binary size limit
• Storage: JXL/AVIF at 2bpp (Vulkan AVIF HW decode?)
• Runtime: Spark GPGPU compressor → ASTC4x4 and BC7 (8bpp)
• Future - Material composer: Blend layers and decals at material load time

– “Mini Substance Painter”, terrain heightmap, KTX2/Basis aren’t suitable for runtime composing

Compress 1000 ASTC textures per second on low end!

HypeHype is still lacking textures. I would have loved to talk about our texturing 
pipeline, but let’s talk about what we have now and some future plans for next fall.

10MB game binary size limit makes traditional textures very hard to implement. We 
want to compress the texture data as tightly as possible and use techniques to 
expand data further during game loading. 

We co-funded development of a real-time ASTC4x4 / BC7 block compressor. It’s 
developed by Ignacio Castano and is called Spark (https://ludicon.com/spark/). This 
encoder has quality only slightly bit lower than the best offline compressors, but it is 
so fast that we can compress up to thousand 1024x1024 ASTC4x4 textures in a 
single second on low end phones. 

This allows us to use state-of-the-art lossy compressors for our texture assets in our 
cloud server. We have been experimenting with 2bpp AVIF and JXL and the quality 
looks very good. AVIF can also be HW decoded on modern phones (Vulkan Video 
APIs). Decoded RGBA8 is sent to Spark for real-time GPU compression. 

Why don’t we used existing super-compressed formats such as KTX2/Basis? We 
have plans to introduce a material composer in HypeHype. This is basically a “Mini 
Substance Painter”, and it allows our users to create their own materials on the 
phone. Materials are composed from multiple texture layers and decals, allowing us to 
bring lots of texture variety and hide tiling even with very small texture storage budget. 

https://ludicon.com/spark/


Visual comparison - Fall 2023 → Summer 2024

OLD

NEW

And this is how it looks like. On left side we have a screenshot from last fall. This is 
using the old rendering pipeline. 

On the right side you see the new PBR pipeline with all the new features: PBR lighting 
(direct & indirect), GTAO, cascaded shadow mapping, LODs, instanced rendering, 
PBR bloom (mip chain), color grading and ACES tonemapping. We managed to 
implement all of this in 8 months. 

The game shown here is a 2 year old UGC game. I didn’t change the game content at 
all. It’s 100% the same scene. I did however spend 5 minutes remixing the lighting 
environment of this game to look it better, and improved the draw distance as our new 
technology has performance to run much larger scenes. 
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