




Hi everyone! My name is Niklas and I’ve been working at EA for the last 2.5 
years. My main responsibility there have been to bring up the graphics side of 
the Frostbite engine on mobile devices.



This talk will focus on our journey so far. I’ll start off by running through some 
history. Then talk about what we’ve done the last year and share some of our 
findings.





When I started 2.5 years ago, Battlefield 4 was in full production. We were a 
small team consisting on 4 people that had taken on the task to get selected 
parts of Frostbite running on tablets. The pilot project that we were building 
this for was Battlefield 4 Tablet Commander, which was a game where you 
could join battlefield servers and play as a commander.



This is what it ended up looking like. The commander mode had actually been 
available in earlier battlefield games, but was brought back into Battlefield 4. 
By supporting Frostbite on tablets we could re-use large parts of that code, 
making the time to build the game a lot shorter.



While doing this we had started to develop a more long-term plan for what 
Frostbite on Mobile could be in the future. We had the strong feeling that we 
could bring the full frostbite experience to mobile with xbox 360 fidelity 
within a year, so we set out our next goal. Also we wanted to see if the 
dynamic nature of the Frostbite engine could play well on mobile and as the
engine already scaled from 360 to gen4 console and PC quality, we predicted
this should be possible.



At the time we started development were still limited by OpenGL|ES 2.0, but 
with a wide variety of extensions.

We got a lot of functionality up, adding support for extensions to utilize 
hardware shadow sampling and instancing.
It was hard to keep all the various devices running at all times due to the
fragmentation landscape and quality of driver implementations.

Then came OpenGL|ES 3.0 and we could almost remove all of the extensions 
we used and just use plain OpenGL|ES 3.0. Compatibiilty started to become 
much better.

As we didn’t have a legacy to maintain, we placed our bets on ES3 and 
beyond. Similar to how we bet on DX10 early for PC.



So to understand what kind of work we had to do:
Frostbite have two main types of shaders.
Shader programs, which are hand-written shaders that are written by 
programmers for solving a specific task.
Surface shaders, which are shaders represented by graphs authored by artists 
in our editor usually used as materials for objects.

All the hand-written shaders, like post processing etc, we manually ported to 
GLSL as it left us the opportunity to optimize them
fully for our targets.

We did a lot of optimizations like removing dependant texture reads and 
moving heavy computations out to the vertex shaders.
For the surface material shaders we just added GLSL emitting code to our 
shader generator.

As many others we found this nice tool by Aras of Unity called GLSL-optimizer 
and made use of that to strip our final code down to reasonable sizes.

One of the biggest changes to the engine we had to do then was to add 
support for forward rendering of both opaque and transparent objects. The 
engine had been exclusively using a full deferred renderer on all platforms, 



but due to the bandwidth restrictions on mobile devices we had to add support for 
forward rendering.

We got the best performance by using a hybrid approach where we did a z prepass 
and used that depth buffer for calculating all screen space depth buffer effects, such 
as accumulating the shadow map cascades in a screen space shadow buffer, 
computing ssao and downsampling depth buffer to a half-res depth buffer for the
half-res transparency pass. The biggest benefit here was that we reduced the 
bandwidth by not having to store / load the large hdr buffer to/from the tile memory
after the opaque pass, but could instead continue with the transparent passes 
keeping data in tile memory as long as possible.

Everything was looking pretty promising but we were still lacking features that the 
engine had started to rely heavily on.



Then about a year ago we got the opportunity to test pilot Metal. The plan 
was to have demo for WWDC so we went there and luckily we finished it in 
time.



This a capture from the demo we showed at WWDC.



We went to Cupertino and worked on this for a number of weeks together 
with a small team from Popcap and our co-workers at home.

As we already used the glsl-optimizer compiler, we quickly realized that the 
easiest way to add support for all the shaders we needed would be to add a 
backend that generated Metal code.

After implementing the Metal API and creating the compiler backend all of 
this turned out to be working really well and we could toggle on all the 
features needed.

It enabled us to reach steady 30 fps with SSAO, DOF, Radiosity, cascaded 
shadowmaps, HDR color grading, FXAA and lots of draw calls on a stock iPad 
Air 1.



Apple had taken a lot of inspiration from how API:s were starting to be 
designed for the traditional platforms and put these idioms on to mobile.
They also added new mobile specific concepts like being able to control the 
lifetime of renderpasses and tile memory. The Metal API turned out to be a 
good fit for Frostbite as the engine had continously been moving towards
more explicit graphics api:s and memory management.

Due to the low-overhead nature of the api we could see a 5x lower cpu 
overhead than what we had with OpenGL. Also using the api for controlling 
the tile memory lifetime we could guarantee our bandwidth from/to tile-
memory was kept to a minimum.

However the gpu bottlenecks stayed the same. We had to reduce our amount 
of alpha tested objects to a minimum. Also, due to the reduced cpu overhead, 
instancing didn’t provide us with any major benefits in terms of performance 
on the cpu/gpu. At least not for the dataset for the demo.



At this point we were very excited to see how far we could push our Metal 
backend and the hardware, so we set out a new goal. This time pretty 
ambitious. We decided that we would try to get a vertical slice of Battlefield 4 
up and running on an iPad Air 2 that had just been released.



And we succeeded. The most complex new features we got up and running 

was our advanced terrain system that uses a virtual texture to be able to 

visualize large terrains and our mesh scattering system used to distribute and 

render vegetation and rocks.



As the content still had quality levels for the old consoles we could piggy back 

on that to get suitable levels of details. We got this running in 30 fps on an 

iPad Air 2.



Doing this we had two major challenges. Ps4 and Xbox one had become the 
primary engine targets with xbox360/ps3 being removed from the engine.
Keeping memory consumption down wasn’t everyone’s top priority anymore. 
Also, we had never tried to run anything of this size on our tablets so we were 
very concerned about memory.

However as we knew BF4 shipped on 512 MB consoles we were hopeful.



To tackle this we added fine grained statistics for our gpu textures / buffers. 
The engine have tags for all the resources, so we added commands for 
printing all the resources by size and usage frequency to easily see what we 
should focus on and could get rid of. Here’s an image of a statistics view that 
we’ve used quite a lot to keep track and get an overview of our resources. 
Due to the various quality of native profilers and the difficulties of setting up 
environments for them we wanted to be able to profile as much as possible 
with our own cross platform code

We had to compress all the textures, which took many hours for a single level. 
The virtual terrain texture however, as it was built in runtime and we had no 
suitable runtime compressor for mobiles, needed to be stored raw and took
almost 100 mb.



The biggest challenge was the fact that a lot of custom shaders were written 
in pure HLSL. We could of course just have ported all shaders to GLSL as we
did previously, but as HLSL was the main shader language of the engine and 
we had noticed it is a pain to maintain multiple versions of shaders we 
decided it was time to revisit the way we manage shaders on mobile. Also the 
shader languages of the mobile platforms had matured.



As we already had backends for glsl-optimizer it made sense to use that as a 
basis for a cross-compiler. We had a look at the compiler source code and 
decided it would be possible to create a decent cross-compiler by adding a 
frontend that parses HLSL and some code to handle unique HLSL features. A 
few months later that was done.

It is a DX11 style syntax compiler that supports compiling all of our shaders, 
including compute shaders. The result of a compilation is a Metal or GLSL
source file, with a json file containing reflection such as constant buffer 
names to offsets/sizes, resource mappings and number of compute threads 
per group.



Here’s an image showing some of these features. It handles implicit type 
conversions, function default parameters, HLSL semantics, HLSL matrix syntax 
etc.

HLSL register name to actual resource index is provided in the reflection data.

Not shown here is support for compute shader writeable buffers, atomics and 
append/consume buffers through buffers + atomics.

One nice side effect of having our own compiler is that we have been able to
make workarounds for vendor specific bugs in the backends of our compiler.



With all the focus on Metal, we realised we could improve our OpenGL|ES 
backend, so we spent time fixing bugs and aligning the platforms even more. 
Metal, being a pretty transparent api, had learnt us a lot of how mobile GPU:s 
should be treated. We used this knowledge to refine our OpenGL|ES
implementation. For instance when we created the Metal backend we added 
an explicit api for controlling if the frame buffer textures should be loaded to 
tile memory and stored back. We had started to make heavy use of this api in 
the code to reduce bandwidth. This optimization could be transitioned to ES 
by just implementing that api using glInvalidateFramebuffer and glClear.

We also made an effort into supporting switching deferred and forward 
rendering in runtime for all our platforms, to be able to compare performance 
and try out features in both modes.



At this point the PBR transition of frostbite was nearly done. With everything 
we had done to close the gap between mobile and console/desktop, PBR and 
dynamic lighting seemed to be a pretty low hanging fruit. Also, all the 
Frostbite games were transitioning to our new PBR system for managing our 
materials and lights so we needed it.



There’s a few good talks going into details of how this has been achieved in 
the engine. The images here shows some upcoming games and from now on 
all the Frostbite games are Gen4 console / PC only.



The engine supports multiple types of lights including lights with 
shadowmaps, planar reflections and local reflections through cube maps. 
Multiple local reflections can be baked in runtime or offline and stored in a 
database and loaded on demand into a texture array.



In order to be able to render many of these lights efficiently we need to 
create a spatial data structure.

We do this by taking the set of lights that are inside the view frustum and 
perform a pass that bins them into 2d-tiles, usually 16x16 pixels.
It tries to eliminate as many lights as possible by using various culling 
techniques against each tile frustum and a coarse z-buffer consisting of the 
min and max z per tile.

The result of this pass is a 2d-texture or buffer, containing light counts for 
each light type and an offset into a buffer of indices that in turn references 
the actual light data.

This extra indirection is used to reduce the amount of memory and copies 
needed for the light data.



The data produced from the light culling pass can then be used to get the list 
of lights that can potentially affect each pixel.
We can use this data structure for both forward and deferred rendering. 

In the forward case it’s simple.
When rasterizing primitives we can just determine which tile we’re in to get 
the list of lights and then iterate over them to accumulate their values.

In the deferred case, however, as we have already rasterized the g-buffers we 
need a way of not having to process tiles that don’t contain lights.
Therefore we run a compute shader after the binning pass that finds out 
which types of lights are affecting each tile. This information is used to issue 
several indirect dispatches, that only process the tiles affected by lights, with 
optimized shaders for each permutation of lights.



Here’s an illustration of the steps involved when culling and applying lights 

using our deferred path. The first image shows the final image. The upper-

right image visualizes the light grid, and the bottom images show two of the 

passes that are executed to apply lights when doing deferred rendering. As 

you can see we will only process the tiles that gets affected by the lights.



As usual it turned out to be more work than expected. Getting the complex 
cross-compiled shaders even to compile in the native compilers was non-
trivial.

Currently the light culling / binning phase relies heavily on compute shaders, 
so as of today that is a requirement. Compute support on mobile isn’t optimal 
yet, so we could probably benefit from doing the culling on the cpu early on in 
the frame. We won’t be able to use the depth buffer for the the culling, but
doing clustering on the cpu could erase the need.

As we had previously added deferred/forward toggle, we implemented
support for being able to toggle a z prepass. This prepass helps when doing
the light culling with forward rendering at the cost of rendering extra 
geometry.



There were a few things we had to do to support some of the new features in 
the engine on mobile.

As both vanilla ES3 and Metal were missing support for cubemap arrays we 
had to add pass that when baking the reflection volumes into cube maps
converted them to 2d lat-long textures.

This adds a small alu overhead when getting a sample, but works properly
with adressing modes, bilinear filtering and mipmaps. Also we can use exactly
the same code with a different function for sampling the texture.



Having an array of reflection textures allows us to sample different reflection 

volumes per object or even several per object when doing deferred light 

accumulation.



We added a vertex/pixel-shader version of the deferred light accumulation 
pass in order to be able to emulate the indirect dispatches with optimized 
shaders for applying lights. Basically the vertex shader receives the indirect 
args buffer and emits an offscreen primitive if the tile to be rendered is out of 
bounds. Also this meant we could stay in tile memory when accumulating all 
the different light types.



It’s worth mentioning that everything is dynamic, ranging from the lights to 

dynamic shadowmaps for every light, to dynamically updated reflection 

views.



In order to reach 30 fps with all the fancy new features we had to further 
optimize what we had. Instead of changing the algorithms we attacked the 
problem by trying to optimize our backends and shader code as much as 
possible.

As I previously mentioned we had implemented an api to tell the backend 
what to do with the frame buffer textures. Using this information we could 
also in the backend merge many render passes, without the user having to 
care about it. In GL drivers this already happens in many cases, but on Metal 
where things are more explicit we had to manage this. In some cases we
restructured the order of passes to be able to merge them on mobile, which
didn’t affect the performance on non-mobile platforms.

We also added a lot of redundant state filtering, including keeping common
buffers and textures at fixed register indicies to reduce state changes.



In terms of shader code we added a lot of intrinsics to the cross-compiler to 
get as efficient code as possible. In many cases these maps to single
instructions. Also we disabled vector optimization passes in our cross-
compiler to help optimizing for scalar alu:s and not loose any information for 
the native compilers. Also still don’t expect compilers to optimize even the 
trivial things for you.

Our performance of some of the more advanced shaders were doubled by 
managing packing of structs ourselves in the cross-compiler.





To summarize our work has shown that a bleeding edge engine can run on 
today’s mobile hardware.

We’ve done a straight implementation of the engine, cross compiling all 
shaders with minor divergence.

Our approach has been to get the full picture before starting to tweak the 
details. We prefer to disable slow features until we attack them and attack 
the ones giving the most bang for the buck first. We believe we’re at a point 
now when we have the full picture and can start diving into the details.

Things we have noticed: Many tile memory specific optimizations such as 
merging render passes and specifying how frame buffer textures should be 
loaded and stored can be done without diverging code bases. Cross-
compilation is key.



We hope that Vulkan will get a good uptake on Android as this style of api has 
proven to be a good fit for our engine. Until Vulkan has gained some 
momentum, we will stick to ES3 and experiment with ES 3.1. We haven’t had 
time to experiment with the tile storage yet and really want to see what can 
be done it with it. There’s a really interesting talk from last year going into the 
details on how this can be used to optimize deferred rendering. Also due to 
most mobile gpu:s having native support for both fp16 and fp32 operatons, 
and with newer gpu:s some alu may perform better than a single texture 
lookup we want to find a good balance there.

Frostbite has also started to utilize async compute, tesselation and indirect 
dispatches a lot so we hope to see more of that on Mobile in the future.



I’ll wrap up with this quote, that apparently has been said by many famous 
persons, because I think it resonates well with what we all do in the mobile
space.

If you have any questions, don’t hesitate to mail me here.

Thank you!



Here are the previously mentioned talks.




