EVE: Gunjack is an arcade turret shooter, built from the
ground up for VR, and is CCP's first mobile VR game.
Gunjack was released in Nov 2015 alongside Samsung's first
consumer version of GearVR and became a top seller on the
Gear VR.




Play Gunjack Trailer -- 1 min 16 sec




Topics Covered

- Graphics development approach
- Art content optimizations

- Rendering optimizations

Intro slide to what main areas will be
covered.

Biggest challenge in Mobile VR is
performance — for good player
experience it required to render at 60
frames per second to avoid VR
sickness and at high resolution to
reduce the effects of Screen-dooring.




Tracking performance

Screenshot of a tool that allowed the
whole team to monitor and optimize
performance.

Specifically useful is the white lines
that show game events — this allows
designers to not overload missions
and cause bad performance

Also note that that the charts show




device temperature — more about this in
slide 6




Content Budgets

- Triangles: 50~60k for whole scene

- LOD Distance: 10000 units which is hundred meters (2 LOD level
is enough, also for saving memory)

- Draw call: 100 both eyes per frame (Merge material/ meshes,
instancing)

- Resolution: 1280 x 1440 x 2 (Samsung note 4)

- Material: ~130 instructions

Alongside performance monitoring
tools, we also created content budgets
— these took some iteration and this
shows what we used to make Gunjack
— hopefully useful to you guys.

Particularly restrictive is draw call
count.




Balancing Heat and Power

- The device is powerful but we can’t take all of it

Graphics Battery life

=
performance p v vig Overheating

[—

Problem: running device at full clock
rate causes device to overheat in a
few minutes.

Solution: don't run device at full clock
rate most of the time.




Back face removal

- Reduce the workload of rendering pipeline by removing any
face that player can not see

An important content optimizations we
made in Gunjack.

Not a new technique but does have an
Impact — don't waste memory or
bandwidth on verts/faces that the
player just won't see.




Back face removal

More examples of removing back
faces that just cannot be seen by the
player — these turrets always looks
solid from players point of view.




Scene cap skybox

- Use 6 cameras to capture a skybox

Reduces background scene to just a
pre-rendered sky box — used in
combination with some clever UV and
vertex colour and composited with a
detailed 3D foreground




Matcap fake reflection

- Using Fully Rough for some
object for higher
performance

- But lose reflection

- Use Matcap reflection to
Compensate

Allows reflective materials but with
lower cost




Cutscene performance tips

- Try to hide occluded object as much as possible

- Break big/complex mesh into pieces, use tricks to make sure player
can only see part of pieces at a time

- Control visibility using matinee events

« Cumbersome work, but worth it




Cutscene performance tips

X
AU T

Required to keep quality as high as
possible by simply turning off what
can't be seen




Dynamic Batching

- Our budget was only 50 draw calls per eye — too few to render a
scene full of enemies, explosions, HUD indicators etc.

. Create some assets such that can be vertex transformed on CPU and
render them all in a single draw call

There was a per vertex CPU cost to
this optimization — so it was important
when creating assets that could be
batched to have a reasonably low
vertex count.




This screen shot of Gunjack showing
several enemies firing missiles is a
good example of this optimization
working well — highlighted in each
colour is each batch that were each
rendered with a single draw call




Draw order

- Fill rate is also a precious resource
- If render near object first we can reject pixels behind it

- Lots of pixel fill saved by sort object from near to far in Gunjack




~20% of screen area

TIIINEIXTINY)
=
= = <= e &

Sl T /‘ :
100 '"\““-r » |
- -
. i %

This screen shot shows a typical
scene in Gunjack — the area
highlighted actually takes up about
20% of screen area — so just ensuring
It Is rendered first reduces overdraw.




Lower resolution translucency
rendering

- A method to reduce number translucent pixels rendered

- Artist mark some effects as “low res”

- Low res effects are rendered to a small rendertarget

- and composited to the full res screen in the custom post process
shader




Lower resolution translucency
rendering

On the left is an explosion effect
rendered at a lower resolution in the
middle is a scene rendered at full
resolution and on the right is the effect
composited with he scene.




No Post process!

- LDR pipeline (no Tonemapping or Bloom )

- Artist make effects “glow” using special setup

Without HDR, effects artists still could
use techniques from before HDR
became possible — on the left you see
effects rendered with extra glow
sprites — which when composited into
a scene on the right still looks very

bright.




Adjusted default shader

Modified Unreal default PostProcessMobile.suf
- Simplified AA

- Camera fade in/fade out

- Low res translucency composited

- More cheap post processes




Topics Covered

- Graphics development approach
- Art content optimizations

- Rendering optimizations










