
HIGH QUALITY, HIGH
PERFORMANCE
GRAPHICS IN FILAMENT
Romain Guy

© 2 0 2 0 S I G G R A P H . A L L R I G H T S R E S E R V E D .

What is Filament?
https://github.com/google/filament

Filament is a physically based real-
time renderer for Android, iOS,
macOS, Linux and Windows
It supports OpenGL ES 3.0, OpenGL
4.1, Vulkan, and Metal
It is JUST a rendering engine, not a
game engine
Used in AR applications at Google
for instance

Design goals

Embeddable
aarch64 first
Small binary size (aarch64 is 480
KiB compressed)
High rendering quality: advanced
material models (anisotropy, clear
coat, cloth…) and effects
(refraction)
Stay physical as much as possible:
camera, light units, etc.

https://google.github.io/filament/Filament.html

Physically based rendering
in Filament

You may know Filament because of
its documentation on PBR
It’s a long document explaining all
the theory, math and choices
behind our PBR implementation

Optimizing for tilers

There are TWO MAJOR
optimizations you MUST implement
before you do ANYTHING else in
your engine
The first one of them is handling
tiling GPUs properly

resolve/unresolve

Bandwidth is at a premium on
mobile, it’s improving at a glacial
pace
And to help with bandwidth
management on tilers you must
RESOLVE and UNRESOLVE tiles
properly
A resolve — or store — is writing
the GPU tile to memory
An unresolve — or load — is
reading a GPU file from memory
Explicit on Metal and Vulkan, and
GLES drivers try to do this using
heuristics
For instance if you do a full-surface

glClear, the driver will likely skip
the unresolve

glInvalidateFramebuffer()
before draw calls → prevent unresolves

after draw calls → prevent resolves

Resolves/unresolves can be
controlled explicitly in GLES using
glinvalidateFrameBuffer()
It is however tricky to do manually,
you must know whether you need
the content to be resolved/
unresolved, which becomes
complicated when you have many
features in your rendering pipeline
that can be enabled/disabled
We let our FRAMEGRAPH do this for
us

Framegraph
knows all buffer dependencies

manages buffers lifetime

computes discard flags

The discard flags are the flags
passed to glInvalidateFramebuffer()
They are computed per buffer, and
per pass:
-Buffer is never read after current

pass: discarded at the end of the
current pass

-Buffer never written to before the
current pass: discarded at the
beginning of the current pass

-Buffer cleared by the pass:
discarded, no matter what
happened before

Here is a frame graph for a color
pass + a post process pass (color
grading/tone mapping/dithering) +
a pass of FXAA
It’s fairly simple and managing
resolves/unresolves by hand here
is easy

And now, here is a frame graph
with more passes:
directional shadows, spot shadows,
screen-space shadows, screen-
space refraction, SSAO, bloom,
color grading, FXAA and MSAA.
This gets even more complicated
when we enable depth-of-field
Code that resolves/unresolves
buffers quickly becomes
unmaintainable when you have so
many passes and dependencies
between the buffer. The problem is
made worse by the fact that
everything can be changed
dynamically at runtime.

Shadows

FXAA

Post processing

Color pass

But let’s take a look at a concrete
example.
This is the anatomy of a frame on a
Pixel 4 where we don’t both with
glInvalidateFramebuffer().
First the shadow passes. Then the
color pass: RGBA16F, MSAA, in
2000x1080 pixels. We’re going to
zoom in on that pass in a minute,
but look at the pattern of colored
blocks. Each repetition is one of the
GPU tiles. Then, we have post
processing. And finally, FXAA.

Unresolve colorResolve depth

Render Resolve color

Let’s zoom in one of those tiles for
the color pass. First, we render.
Then, the depth buffer is resolved.
That’s unfortunate since after the
color pass we never need the
depth!
The, the color buffer is resolved.
That makes sense, we need is for
post-processing/output
Finally, the color buffer is
unresolved for *the next tile*.
That’s silly because we always
render the entire screen and we
don’t need the previous content

Shadows

FXAA

Post processing

Color pass

Now here is the same frame with
tile management using
glInvalidateFramebuffer()
We still have the same render pass
but you may be able to notice a
difference about the color pass
It’s much smaller relative to the
other pass. Let’s zoom on that…

Resolve color

Render

And indeed it is much simpler! We
render then resolve the color
buffer.
We don’t do any extra work!
On a Pixel 4, at 1080p all those
extra resolves and unresolves can
add up to 1ms per frame just in the
color pass

We can do better

There is one more thing we can do.
Recall that our color buffer is
RGBA16F, which means each
resolve writes 64 bits per fragment.
We need this data for the color
grading/tone mapping/dithering
pass. Or… do we?

Post-processing
(sometimes) only needs current fragment

perfect candidate for
Vulkan subpasses/GL_EXT_shader_framebuffer_fetch

When effects like bloom, screen-
space refraction, etc. aren’t
needed, we go directly from the
color pass to the post-process
pass. And that pass only needs the
current fragment
This makes it a perfect candidate
for Vulkan subpass, or in the GLES
world, the frame buffer fetch
extension

Recipe
1. Use 2 MRTs: 1 HDR (RGB16F), 1 LDR (RGB8)
2. Render color pass into HDR target
3. Render full-screen triangle into LDR target

3.1. Shader fetches from HDR target
3.2. Apply color grading, tone mapping, dithering, etc.
3.3. Outputs to LDR target

Here’s how this solution works, it’s
really simple
We start with 2 render targets, both
bound at the same time (it’s key to
staying in the tile)
Note that the color pass never
writes to or reads from the LDR
target

Shadows FXAA

Color pass + post processing

Using frame buffer fetch, the post
processing pass is completely
gone. It is now merged with the
color pass. There are still resolves
happening, but we resolve to 8 bit
(RGB8) instead of RGBA16F. There
are more tiles than before (40 vs
28) because of the increase
memory requirement per tile.

fp16

The second major optimization you
can implement is to use half floats
everywhere in your fragment
shaders
You can run 2x as many
instructions per cycle
Which means either better
performance, or using less power/
generating less heat

precision mediump float;

out vec4 fragColor;

void main() {
 // Do work
}

With GLSL it’s trivial, just set your
default precision to mediump and
you’re done!

It can’t be that easy
min value → 0.000061035

max value → 65,504

precision in [1,024..2,048] → 1

Well… almost
We must deal with 3 problems: first
the min value is not that small. It’s
quite easy to reach when you start
squaring small values in BRDFs.
Note that we assume that GPUs
don’t support denormals, or at
least that we don’t want denormals.
The second issue is that the large
value is only 65k or so. We’ll see
why that’s an issue very soon
Finally we lose all fractional
precision above 1024. This makes
half float unsuited to store texture
sizes or any kind of UVs, especially
in screen space since on mobile
resolutions are much higher.
Obvious this is also an issue for
vertex positions. For instance this
would mean a resolution of 1 meter
1km away from the origin. Not
good.

roughness = clamp(roughness, 0.089, 1.0);

// we use x / (roughness^4) in our code
// min value in fp16 → 2^-14 = 0.000061035
// we want roughness^4 >= 2^-14
// so min roughness = 2^(-14/4) ~= 0.089

So let’s take a look at how to use
half precision floats in your shaders
successfully
First make sure to clamp values so
that you don’t end up with
divisions by 0
For example here is how we clamp
roughness to a minimum value.
This number 0.089 comes from
understanding the math we
execute in the shaders…

float D_GGX_Anisotropic(float at, float ab, float ToH, float BoH, float NoH) {

 float a2 = at * ab;

 highp vec3 d = vec3(ab * ToH, at * BoH, a2 * NoH);

 highp float d2 = dot(d, d);

 float b2 = a2 / d2;

 return a2 * b2 * b2 * (1.0 / PI);

}

 // at & ab → roughness^2, a2 → roughness^4
 // The dot product below computes roughness^8

 // → won’t fit in fp16 without clamping the roughness to 0.298
 // → perform the dot product and the division in fp32

Sometimes however you don’t have
a choice
Here is for instance the anisotropic
NDF we use in Filament
Notice how we compute “d” and
“d2” at high precision, with single
precision floats. Why is that?

#define MEDIUMP_FLT_MAX 65504.0
#define saturateMediump(x) min(x, MEDIUMP_FLT_MAX)

float V_SmithGGXCorrelated(float roughness, float NoV, float NoL) {
 float v = // ...
 return saturateMediump(v);
}

Here is another interesting
example. Sometimes computations
can tend to infinity, as is the case
with this visibility term.
Unfortunately on some mobile
GPUs infinity leads to a black pixel.
To avoid this we clamp the result to
65,504

// GPU computation
color = lightIntensity * cameraExposure * BRDF();

Here is one last problem. This is a
simplified implementation of our
lighting. Nothing crazy here
Unfortunately things are a little
more complicated when we look at
the possible values at play

// Intensity of the Sun in lux
float lightIntensity = 110000.0f;

// Exposure for a clear day:
// ƒ/16, 1/125s, ISO 100
float cameraExposure = 0.000026042;

> max fp16 (65,504)

< min fp16 (0.000061035)

This code represents a typical
setup with our physical light units
And there are two issues with those
values
- the sun intensity is too large to fit
in fp16
- the exposure is too small to fit in
fp16

// CPU computation, using 32-bit floats
float preExposedLightIntensity =
 cameraExposure * lightIntensity;

// GPU computation, using 16-bit floats
color = preExposedLightIntensity * BRDF();

2.86462

The solution is quite simple, we
simply pre-multiply light intensities
on the CPU
In our example this yields a value
that fits neatly in fp16 and our
computations work just fine
In practice we store our lights pre-
exposed

Be careful

Using these techniques we’ve been
able to write our shaders in fp16. It
can be tricky to chase artifacts
created by a computation in fp16
but it’s worth the efforts. Falling
back to fp32 is sometimes
unavoidable, mostly when you deal
with UVs/texture sizes and vertex
positions, etc.

Faster* BRDFs

* Faster but more “wrong” :)

V(v, l, α) =
0.5

n ⋅ l (n ⋅ v)2(1 − α2) + α2 + n ⋅ v (n ⋅ l)2(1 − α2) + α2

a2b2 + c2 ≈ ab + c

Here is the height-correlated Smith
NDF described by Eric Heitz in
“Understanding the Masking-
Shadowing Function in Microfacet-
Based BRDFs”. It’s the term we use
in our BRDF… at least on desktop.
The two square roots are not ideal
on mobile.
Let’s focus on one of those square
roots
It’s the square root of a mad of
squares, and all the terms are in
the [0..1] range, so if we squint
hard enough… we can remove the
square roots :)

V(v, l, α) =
0.5

n ⋅ l(n ⋅ v(1 − α) + α) + n ⋅ v(n ⋅ l(1 − α) + α)

V(v, l, α) =
0.5

2(n ⋅ l)(n ⋅ v)(1 − α) + (n ⋅ v + n ⋅ l)α

And look, no more square roots, no
more squares!

float V_SmithGGXCorrelated_Fast(float roughness, float NoV, float NoL) {
 // Hammon 2017, "PBR Diffuse Lighting for GGX+Smith Microsurfaces"
 return 0.5 / mix(2.0 * NoL * NoV, NoL + NoV, roughness);
}

After simplification we end up with
a simple lerp
This horror was described
independently by Earl Hammon at
GDC 2017
Note that we only use this
approximation on mobile

Let’s take a quick look at clear coat
Clear coat is implemented as a
second specular lobe on top of the
base layer
It’s great to crate beautiful
materials like this lacquered wood
or coated carbon fiber, and it’s
easy to implement too
But it’s a second BRDF to compute
per light…

VclearCoat(l, h) =
1

4(l ⋅ h)2

For clear coat we replace the
visibility term by another one,
described by Kelemen
in the paper “A Microfacet Based
Coupled Specular-Matte BRDF”
Eric Heitz has shown in his own
paper, “Understanding the
Masking-Shadowing Function in
Microfacet-Based BRDFs”, that this
term is not physically based
But it’s *cheap* and it still looks
great, so we adopted it
We may revisit this decision since
the simplified Visibility term shown
previously isn’t that much more
expensive

Tone mapping

Krzysztof Narkowicz has
a popular fit of ACES

A few years ago Krzysztof
Narkowicz popularized a fit of the
ACES RRT+ODT for sRGB output

vec3 Tonemap_ACES(const vec3 x) {
 // Narkowicz 2015, "ACES Filmic Tone Mapping Curve”
 const float a = 2.51;
 const float b = 0.03;
 const float c = 2.43;
 const float d = 0.59;
 const float e = 0.14;
 return (x * (a * x + b)) / (x * (c * x + d) + e);
}

Here is the implementation. It’s
simple and straightforward, which
probably explains its popularity
Especially compared to how
complicated the ACES RRT+ODT
are…

vec3 Tonemap_Mobile(const vec3 x) {
 // Transfer function baked in,
 // don’t use with sRGB OETF!
 return x / (x + 0.155) * 1.019;
}

We propose a simple, extremely
fast tone map operator that also
approximates the sRGB transfer
function.
It’s all kinds of “wrong” but it’s
good enough for mobile
And it’s cheap

10-4 0.001 0.010 0.100 1 10

0.2

0.4

0.6

0.8

1.0

1.2

— ACES fit
— Mobile

Here is a comparison of the tone
mappers with gamma 2.2

And a quick comparison of the
ACES fit…

And the approximation for mobile
NOTE: As of Filament 1.8 we don’t
use this anymore. We use a LUT for
both tone mapping and color
grading, with different tone
mappers to choose from

Image-based lighting

Spherical harmonics
SH 2 or 3 bands for diffuse lighting

easy to compute offline & cheap to apply

looks great for low/medium dynamic range environments

We started, not surprisingly, with
spherical harmonics.
We use either 2 or 3 bands for the
diffuse component of indirect
lighting
These SH are easy to compute and
are dirt cheap to apply, especially
with 2 bands
And importantly they yield great
looking results for low to medium
dynamic range

Here is an example of a scene with
a rough, dielectric gray sphere lit
by 2 bands SH
The environment is medium
dynamic range, ~9 EVs
It looks great, it’s fast, we love it

Unfortunately spherical harmonics
don’t fare so well in high dynamic
range environments, here 21 EVs
(the center of the sun has a value >
300,000). This is not something
you’d see in a game, or at least
you’d want to remove the sun and
use an analytical light instead (for
shadows, etc.)
We can see 2 issues with 2 bands
SH here:
-ringing
-and the back side of the sphere is

completely wrong. It’s too dark
but the light also wraps around
the sphere

There are ways to improve the
results with SH. First we can use
more bands, and we can apply a
low-pass filter to the spherical
harmonics (“windowing”). Our
implementation follows “Deringing
Spherical Harmonics” by Peter-Pike
Sloan, and you can see the result
above. The ringing is gone but the
back side of the sphere is still
wrong; it looks like we use a wrap
diffuse term.
This is is not good enough for us
because some of our clients want
to use such high dynamic range

environments.

So Filament gives you a choice: you
can use SH, or you can use a
diffuse map. Here is the result of
the same scene with diffuse
lighting coming from a texture. The
result is much better and much
closer to that of an analytical
directional light.

Diffuse map?
costs a sampler

more memory & storage

not worth it for us

So clearly a diffuse map gives
better results, but is it what we
want?
First, an extra texture means
another sampler. We have a limit of
16 samplers on mobile and
because we use a forward renderer
any sampler we use cannot be used
by the user’s materials.
Of course, this also means more
memory and storage for the app,
although those are less of an issue
as the diffuse map can be small
(128x128 for instance). It’s still an
extra texture to carry around

Ultimately we decided it wasn’t
worth it

Specular map!
diffuse lighting ~ specular lighting at roughness=1

roughness 1.0 → cannot be 1x1 LOD

looks good enough

∑ L(l) ≈ ∑ ⟨n ⋅ l⟩ L(h)

So instead we use the specular
map, or the preconvolved
environment map
If you squint hard enough at the
equation, the integration of the
specular BRDF at roughness=1 is
almost diffuse lighting. Besides our
IBL already relies on the split-sum
approximation, we can do funky
stuff with the math :)
Of course this means we cannot
map roughness=1 to the 1x1 LOD,
otherwise we’d lose all details. In
practice we use the 16x16 LOD

In practice, it looks like this. Now if
you look at the terminator you’ll
notice aliasing that appears in high
dynamic range environments.

On desktop we use a tent filter
when sampling the “diffuse” map,
to smooth the aliasing artifacts. It
works well but it requires multiple
samples so we don’t enable this
feature on mobile. At high pixel
densities and with textured objects,
this is not an issue in practice. You
can also use Spherical Harmonics
instead if you want (but change
your env map!)

Roughness mapping
256x256 to 16x16 → 5 mip levels

log2(roughness) + roughnessOneLOD

roughnessOneLOD * roughness * (2 − roughness)

I mentioned we want to use the last
specular level, or 16x16 px, as our
diffuse map. Since our first mip is
256x256, we need to find a good
mapping for the roughness that
doesn’t waste high resolution mips.
Starting at 256x256 all the way to
16x16, we have 5 mip levels
So we looked for a mapping that
would give glossy surfaces the
lowest mips
This is our empirical solution.
But in practice we use a quadratic
fit instead to avoid a log2
This mapping works well for a good
range of mip levels, up to 9

Roughness mapping
0 → 0.000

1 → 0.018

2 → 0.086

3 → 0.250

4 → 1.000

So here is our mip map to
roughness in practice
The first 4 levels are used for
roughness < 0.25
It works really well in practice since
above roughness 0.25 lighting
becomes very blurry

Here is a metallic ball with
roughness varying from 0 to 1
showcasing this remapping

Storing IBLs

R11G11B10F → swizzled as RGBA8

RGBM → quality issues

Filament doesn’t impose the format
of the IBL. You can use RGB16F if
you wish, or compressed texture
formats. Unfortunately when
targeting OpenGL ES 3.0 devices
there’s no easy way to compress
HDR textures.
Originally we were using RGBM, but
it proved difficult to pick a shared
multiplier that would work in all
environments, and making it
customizable would just create
confusion in the asset pipelines
So instead we use R11G11B10F,
and we simply swizzle the data as

RGBA8 for storage, typically PNG
files. You should of course not run
any compression on that swizzled
data, all the channels are correlated

Fixing metals

The Cook-Torrance BRDF we (and
pretty much everybody) use models
only a single bounce of light in the
micro facets field.
This lead to a loss of energy
particularly visible at high
roughness. This cause metals in
particular to get darker.

It makes sense intuitively. With a
single bounce (left), a light ray is
unlikely to espace the micro facets
field.
If instead we model multiple
scattering events (right), the light
ray might be reflected toward the
viewer

If we properly account for multiple
scattering events, we can recover
the lost energy and get metallic
surfaces that behave a lot better
See the second row of spheres

The difference is even more
impressive in a white furnace
There *are* two rows of spheres.
The top one, with single scattering,
shows how much loss we suffer
The second row reflects all
incoming energy, as expected

We use a solution from
 Lagarde & Golubev

Solution presented at SIGGRAPH
2018

fr(l, v) = fss(l, v) + f0 (1
r

− 1) fss(l, v)

fr(l, v) = fss(l, v) + fms(l, v)

r = ∫Ω
D(l, v)V(l, v)⟨n ⋅ l⟩ dl

The idea is very simple, the
specular lobe is the single
scattering lobe (from your BRDF) +
a multi scattering lobe
And the multi scatter lobe is itself a
scaled version of the single
scattering lobe
The term “r” happens to be what we
compute in the DFG LUT for image-
based lighting!

const float V = Visibility(…) * NoL * (VoH / NoH);
const float F = pow5(1.0f - VoH);
r.x += V * (1.0f - F);
r.y += V * F;

When you compute your DFG LUT,
your code will look similar to this
We store the importance sampled
visibility term multiplied by Fresnel

const float V = Visibility(…) * NoL * (VoH / NoH);
const float F = pow5(1.0f - VoH);
r.x += V * F;
r.y += V;

The change is very simple, we store
the visibility term directly

vec2 dfg = textureLod(dfgLut, vec2(NoV, roughness), 0.0).xy;
// For image-based lighting
vec3 iblSpecularColor = mix(dfg.xxx, dfg.yyy, f0);

// For other lights
vec3 energyCompensation = 1.0 + f0 * (1.0 / dfg.y - 1.0);
Fr *= pixel.energyCompensation;

Then we can simply apply the
formula from earlier and scale our
specular lobe
It’s cheap, easy to implement and
produce beautiful results
There are other solutions that treat
dielectrics and conductors
separately but they are more
expensive
We like this one for its simplicity
and low cost

Rendering cloth

Filament offers a material model to
create cloth & fabric, including
satin, velvet, etc.
The cloth models lets you control
the sheen color directly and the
roughness works very differently
than it does for regular materials

fr(v, h, α) =
Dvelvet(v, h, α)

4(n ⋅ l + n ⋅ v − (n ⋅ v)(n ⋅ l))

Dvelvet(m) =
(2 + 1

α)sin(θ)1
α

2π

For cloth we use the Ashikhmin
BRDF modified by Neubelt &
Pettineo for The Order 1886
However, our NDF is neither
Ashikhmin’s nor the one from The
Order (normalized Ashikhmin)
Instead we use the “Charlie” sheen
BRDF from Estevez and Kulla
presented at SIGGRAPH 2017
It is softer, cheaper and provides a
more natural control over the
roughness

DFG LUT DFG LUT with cloth BRDF

However, because we use a
different BRDF, we cannot use the
DFG LUT as it
That LUT is computed for the
regular Cook-Torrance BRDF with
GGX NDF and Fresnel term, which
looks completely different
—> !!NOTE: The DFG LUT shown
above is the single-scattering LUT
because you may be more familiar
with it
If you recall the previous slide, the
cloth BRDF does not have a Fresnel
term, so we only need 1 channel to
store the cloth BRDF in the LUT

We use the green channel for that
purpose
We found, just like Estevez & Kulla,
that uniform sampling works well
to generate that LUT

static float DFV_Charlie_Uniform(float NoV, float roughness, size_t numSamples) {
 float r = 0.0f;
 const float3 V(std::sqrt(1.0f - NoV * NoV), 0.0f, NoV);

 for (size_t i = 0; i < numSamples; i++) {
 const float2 u = hammersley(uint32_t(i), 1.0f / numSamples);
 const float3 H = hemisphereUniformSample(u);
 const float3 L = 2 * dot(V, H) * H - V;
 const float VoH = saturate(dot(V, H));
 const float NoL = saturate(L.z);
 const float NoH = saturate(H.z);

 if (NoL > 0.0f) {
 const float V = VisibilityAshikhmin(NoV, NoL, roughness);
 const float D = DistributionCharlie(NoH, roughness);
 r += V * D * NoL * VoH;
 }
 }

 return r * (4.0f * 2.0f * (float) F_PI / numSamples);
}

Just for reference, here is the code
to generate the 3rd channel in the
LUT

One thing left is the convolution of
the environment maps…
Technically we should have a
separate convolution of each IBL
because the BRDF is different
This is however not practical in
terms of storage, memory and
performance on mobile so we reuse
the same convolution
It is wrong but good enough

Multi-bounce AO

The way we render ambient
occlusion suffers from a similar
issue we saw earlier for metals that
darken at high roughness: we only
take direct visibility into account.
Thankfully Jimenez offers a great
solution in Practical Real-Time
Strategies for Accurate Indirect
Occlusion, from SIGGRAPH 2016
(GTAO)

First, let’s see what it does
Here is a scene with regular
ambient occlusion (note we are not
using skin shading in this example)

And here is the same scene with
multiple light bounces modeled in
the ambient occlusion term. Note
the area around the eyes or the
ears. This solution offers both a
more accurate AO term but is also
introduces colored indirect
illumination which provides a more
natural and less dull appearance

vec3 gtaoMultiBounce(float visibility, const vec3 albedo) {
 // Jimenez et al. 2016,
 // “Practical Realtime Strategies for Accurate Indirect Occlusion"
 vec3 a = 2.0404 * albedo - 0.3324;
 vec3 b = -4.7951 * albedo + 0.6417;
 vec3 c = 2.7552 * albedo + 0.6903;

 return max(
 vec3(visibility), ((visibility * a + b) * visibility + c) * visibility
);
}

diffuseLobe *= gtaoMultiBounce(ao, diffuseColor);

The best part is that the
implementation is cheap and
simple. It’s a polynomial fit found
by the Activision team and it’s
trivial to integrate in an engine.
This feature is optional per material
in Filament and is well worth
turning on for some assets

Specular anti-aliasing

Our main AA techniques are MSAA
and FXAA. It is however sometimes
not enough, and for those
situations we offer an optional
material feature to enable specular
anti-aliasing

Here is an example of a glossy
dielectric material
I used a low albedo to make the
specular highlights a little easier to
see

If we zoom out, the highlights get
lost due to aliasing
If we go back and forth… we can
that we lose the same of some
highlights, like the one on the
chest

Now here is the same model with
specular antialiasing turned on

And if we go back and forth…
<FLIP> we properly retain all the
highlights

float normalFiltering(float perceptualRoughness, const vec3 worldNormal) {
 // Kaplanyan 2016, "Stable specular highlights"
 // Tokuyoshi 2017, "Error Reduction and Simplification for Shading Anti-Aliasing"
 // Tokuyoshi and Kaplanyan 2019, "Improved Geometric Specular Antialiasing"
 vec3 du = dFdx(worldNormal);
 vec3 dv = dFdy(worldNormal);

 float variance = specularAntiAliasingVariance * (dot(du, du) + dot(dv, dv));

 float roughness = perceptualRoughnessToRoughness(perceptualRoughness);
 float kernelRoughness = min(2.0 * variance, specularAntiAliasingThreshold);
 float squareRoughness = saturate(roughness * roughness + kernelRoughness);

 return roughnessToPerceptualRoughness(sqrt(squareRoughness));
}

materialRoughness = normalFiltering(
 materialRoughness, getWorldGeometricNormalVector());

To implement this we use a
solution originally devised by Anton
Kaplanyan in 2016, later improved
by Yusuke Toyushi in 2017, and
improved again by both of them in
2019

The main idea is to vary the
roughness based on local
curvature, or variance of the
geometric normal, to filter the NDF.
The papers cited above present two
techniques: one for DEFERRED, and
one for FORWARD. The forward
technique is expensive, with a
multiplication by a tangent frame
for every light. Instead we use the
deferred variant in forward,
modifying the material roughness
once. It works really well and the
cost is sometimes worth it.

// specularAntiAliasingVariance
and specularAntiAliasingThreshold
are two uniforms, our defaults are
respectively 0.15 and 0.2

Ambient occlusion

Scalable Ambient Obscurance
excellent quality → only 7 samples

great performance → 2.3ms @ 1080p on Pixel 4

We use an algorithm called Scalable
Ambient Obscurance by Morgan
McGuire
We chose it because it delivers
great quality even with a limited
number of samples
But it also offers great performance
on mobile
Given how much it can improve the
visuals, this effect is well worth the
cost
NOTE: during this pass we create a
mip chain of depth buffers, which
can be reused for other effects like
depth of field

Here is an example of a scene
without SSAO…

And with SSAO
This is our lowest quality — 7
samples — and it gives very good
results

Our changes
interleaved gradient noise → cheaper

constant spiral angle → avoid sin/cos

face normals from depth → without derivatives

fp16 friendly → cheaper

We change the noise pattern for a
simpler, cheaper one
the sampling pattern is a spiral, we
made the angle constant to avoid
sin/cos. These are EFU instructions
on Qualcomm GPUs which have
higher latency and/or cost more
power
We don’t reconstruct normals using
derivatives. We can only count on
partial derivatives on mobile and
this helps us compute normals at
full resolution
And finally our code tries to do
everything in fp16 of course

Job system

We’re going to use this scene as an
example, on a Pixel 4 (screenshot
from desktop viewer)
It’s the Amazon Lumberyard Bistro
scene (https://
developer.nvidia.com/orca/
amazon-lumberyard-bistro)
Multiple lights, some cast shadows,
some don’t

Render

Culling 0 N

Sorting

Shadow

Color

GC

Lights

0 N

0 N

0 N

0 N

0 N

Driver

N

Here is a simplified version of the
job system used in Filament
Every block represents a new
parented Job, which itself can
spawn N jobs
Effectively every loop in this system
is multi-threaded and jobified
It scales naturally to the number of
cores in the machine
We use it for EVERYTHING
Our implementation is HEAVILY
influenced by Stingray’s

Render loop
Driver thread

1.15ms
8.5ms

The render loop includes: culling,
sorting per pass (shadow/color)
It also includes froxelization for the
lights
In this scene we end up with 200
visible objects (200 draw calls) and
multiple render passes (shadow
maps, color pass, post process)

Here you can see the job system in
action when we load the scene
It maximizes CPU occupancy (8
cores in this case, 4 big and 4 little)
Note it pins the driver thread (blue
blocks at the bottom) to a big core

do {
 if (!execute(*state)) {
 std::unique_lock<Mutex> lock(mWaiterLock);
 while (!exitRequested() && !hasActiveJobs()) {
 wait(lock);
 setThreadAffinityById(state->id);
 }
 }
} while (!exitRequested());

Here is code at the core of our
JobSystem, the loop run by every
thread

do {
 if (!execute(*state)) {
 std::unique_lock<Mutex> lock(mWaiterLock);
 while (!exitRequested() && !hasActiveJobs()) {
 wait(lock);
 setThreadAffinityById(state->id);
 }
 }
} while (!exitRequested());

Every time a thread wakes up we
reset its affinity
We do this because CPUs can be
unplugged on Android which resets
the affinity
By setting the affinity we can pin a
thread to a given core, thus
avoiding hops between cores which
are costly

// Highest affinity bit, assuming this is a big core
// This core is not used by the JobSystem
uint32_t id = std::thread::hardware_concurrency() - 1;

while (true) {
 JobSystem::setThreadAffinityById(id);
 if (!execute()) {
 break;
 }
}

The JobSystem always leaves a core
available, and we guess it’s a big
core using the higher affinity bit
Again we do this every time we
wake up the driver thread to reset
the affinity if we lost it

void JobSystem::setThreadAffinityById(size_t id) noexcept {
#if defined(__linux__)
 cpu_set_t set;
 CPU_ZERO(&set);
 CPU_SET(id, &set);
 sched_setaffinity(gettid(), sizeof(set), &set);
#endif
}

For reference, here is the
implementation of
setThreadAffinity()

Thank you!

@romainguy

Syntax highlighter (https://
romannurik.github.io/
SlidesCodeHighlighter/):
{“bgColor":"#2e2e2e","textColor":"#
f9f9f9","punctuationColor":"#d7b67
c","stringAndValueColor":"#da7f5e",
"keywordTagColor":"#ff436e","com
mentColor":"#afd695","typeColor":"
#faf0a8","numberColor":"#3adbda",
"declarationColor":"#f9f9f9"}

Physically based rendering in Filament, Guy & Agopian
https://google.github.io/filament/Filament.html

Scalable Ambient Obscurance, McGuire, 2012
https://casual-effects.com/research/McGuire2012SAO/index.html

PBR Diffuse Lighting for GGX, Hammon, 2017
https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX

The road toward unified rendering with Unity’s high definition
rendering pipeline, Lagarde & Golubev, 2018
http://advances.realtimerendering.com/s2018/index.htm

Crafting a Next-Gen Material Pipeline for The Order: 1886,
Neubelt & Pettineo, 2014
https://www.gdcvault.com/play/1020162/Crafting-a-Next-Gen-Material

Production Friendly Microfacet Sheen BRDF, Estevez & Kulla, 2017
http://www.aconty.com/pdf/s2017_pbs_imageworks_sheen.pdf

Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs,
Heitz, 2014
http://jcgt.org/published/0003/02/03/paper.pdf

Practical Real-Time Strategies for Accurate Indirect Occlusion, Jimenez, 2016
https://blog.selfshadow.com/publications/s2016-shading-course/

Stable Specular Highlights, Kaplanyan, 2016
http://developer.download.nvidia.com/gameworks/events/GDC2016/akaplanyan_specular_aa.pdf

Error Reduction and Simplification for Shading Anti-Aliasing, Tokuyoshi, 2017
http://www.jp.square-enix.com/tech/library/pdf/Error%20Reduction%20and%20Simplification%20for%20Shading%20Anti-Aliasing.pdf

Improved Geometric Specular Antialiasing, Kaplanyan & Tokuyoshi, 2019
http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf

HDRIs/environments
https://hdrihaven.com/

Textures
https://texturehaven.com/ & https://www.cgbookcase.com/

glTF Samples
https://github.com/KhronosGroup/glTF-Sample-Models

Amazon Lumberyard Bistro
https://developer.nvidia.com/orca/amazon-lumberyard-bistro

Lee Perry-Smith Head Scan
http://graphics.cs.williams.edu/data/

Statue (“Lucy”) by Stanford Computer Graphics Laboratory
http://www.graphics.stanford.edu/data/3Dscanrep/#uses

