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What is Filament?
https://github.com/google/filament

Filament is a physically based real-
time renderer for Android, iOS, 
macOS, Linux and Windows
It supports OpenGL ES 3.0, OpenGL 
4.1, Vulkan, and Metal
It is JUST a rendering engine, not a 
game engine
Used in AR applications at Google 
for instance

Design goals

Embeddable
aarch64 first
Small binary size (aarch64 is 480 
KiB compressed)
High rendering quality: advanced 
material models (anisotropy, clear 
coat, cloth…) and effects 
(refraction)
Stay physical as much as possible: 
camera, light units, etc.



 

https://google.github.io/filament/Filament.html

Physically based rendering 
in Filament

You may know Filament because of 
its documentation on PBR
It’s a long document explaining all 
the theory, math and choices 
behind our PBR implementation

Optimizing for tilers

There are TWO MAJOR 
optimizations you MUST implement 
before you do ANYTHING else in 
your engine
The first one of them is handling 
tiling GPUs properly

resolve/unresolve

Bandwidth is at a premium on 
mobile, it’s improving at a glacial 
pace
And to help with bandwidth 
management on tilers you must 
RESOLVE and UNRESOLVE tiles 
properly
A resolve — or store — is writing 
the GPU tile to memory
An unresolve — or load — is 
reading a GPU file from memory
Explicit on Metal and Vulkan, and 
GLES drivers try to do this using 
heuristics
For instance if you do a full-surface 



glClear, the driver will likely skip 
the unresolve

glInvalidateFramebuffer()
before draw calls → prevent unresolves

after draw calls → prevent resolves

Resolves/unresolves can be 
controlled explicitly in GLES using 
glinvalidateFrameBuffer()
It is however tricky to do manually, 
you must know whether you need 
the content to be resolved/
unresolved, which becomes 
complicated when you have many 
features in your rendering pipeline 
that can be enabled/disabled
We let our FRAMEGRAPH do this for 
us

Framegraph
knows all buffer dependencies

manages buffers lifetime

computes discard flags

The discard flags are the flags 
passed to glInvalidateFramebuffer()
They are computed per buffer, and 
per pass:
-Buffer is never read after current 

pass: discarded at the end of the 
current pass

-Buffer never written to before the 
current pass: discarded at the 
beginning of the current pass

-Buffer cleared by the pass: 
discarded, no matter what 
happened before



Here is a frame graph for a color 
pass + a post process pass (color 
grading/tone mapping/dithering) + 
a pass of FXAA
It’s fairly simple and managing 
resolves/unresolves by hand here 
is easy

And now, here is a frame graph 
with more passes:
directional shadows, spot shadows, 
screen-space shadows, screen-
space refraction, SSAO, bloom, 
color grading, FXAA and MSAA. 
This gets even more complicated 
when we enable depth-of-field
Code that resolves/unresolves 
buffers quickly becomes 
unmaintainable when you have so 
many passes and dependencies 
between the buffer. The problem is 
made worse by the fact that 
everything can be changed 
dynamically at runtime.



Shadows

FXAA

Post processing

Color pass

But let’s take a look at a concrete 
example.
This is the anatomy of a frame on a 
Pixel 4 where we don’t both with 
glInvalidateFramebuffer().
First the shadow passes. Then the 
color pass: RGBA16F, MSAA, in 
2000x1080 pixels. We’re going to 
zoom in on that pass in a minute, 
but look at the pattern of colored 
blocks. Each repetition is one of the 
GPU tiles. Then, we have post 
processing. And finally, FXAA.

Unresolve colorResolve depth

Render Resolve color

Let’s zoom in one of those tiles for 
the color pass. First, we render.
Then, the depth buffer is resolved. 
That’s unfortunate since after the 
color pass we never need the 
depth!
The, the color buffer is resolved. 
That makes sense, we need is for 
post-processing/output
Finally, the color buffer is 
unresolved for *the next tile*. 
That’s silly because we always 
render the entire screen and we 
don’t need the previous content

Shadows

FXAA

Post processing

Color pass

Now here is the same frame with 
tile management using 
glInvalidateFramebuffer()
We still have the same render pass 
but you may be able to notice a 
difference about the color pass
It’s much smaller relative to the 
other pass. Let’s zoom on that…



Resolve color

Render

And indeed it is much simpler! We 
render then resolve the color 
buffer.
We don’t do any extra work!
On a Pixel 4, at 1080p all those 
extra resolves and unresolves can 
add up to 1ms per frame just in the 
color pass

We can do better

There is one more thing we can do. 
Recall that our color buffer is 
RGBA16F, which means each 
resolve writes 64 bits per fragment. 
We need this data for the color 
grading/tone mapping/dithering 
pass. Or… do we?

Post-processing
(sometimes) only needs current fragment

perfect candidate for 
Vulkan subpasses/GL_EXT_shader_framebuffer_fetch

When effects like bloom, screen-
space refraction, etc. aren’t 
needed, we go directly from the 
color pass to the post-process 
pass. And that pass only needs the 
*current* fragment
This makes it a perfect candidate 
for Vulkan subpass, or in the GLES 
world, the frame buffer fetch 
extension



Recipe
1. Use 2 MRTs: 1 HDR (RGB16F), 1 LDR (RGB8) 
2. Render color pass into HDR target 
3. Render full-screen triangle into LDR target 

3.1. Shader fetches from HDR target 
3.2. Apply color grading, tone mapping, dithering, etc. 
3.3. Outputs to LDR target

Here’s how this solution works, it’s 
really simple
We start with 2 render targets, both 
bound at the same time (it’s key to 
staying in the tile)
Note that the color pass never 
writes to or reads from the LDR 
target

Shadows FXAA

Color pass + post processing

Using frame buffer fetch, the post 
processing pass is completely 
gone. It is now merged with the 
color pass. There are still resolves 
happening, but we resolve to 8 bit 
(RGB8) instead of RGBA16F. There 
are more tiles than before (40 vs 
28) because of the increase 
memory requirement per tile.

fp16

The second major optimization you 
can implement is to use half floats 
everywhere in your fragment 
shaders
You can run 2x as many 
instructions per cycle
Which means either better 
performance, or using less power/
generating less heat



precision mediump float; 

out vec4 fragColor; 

void main() { 
    // Do work 
}

With GLSL it’s trivial, just set your 
default precision to mediump and 
you’re done!

It can’t be that easy
min value → 0.000061035

max value → 65,504

precision in [1,024..2,048] → 1

Well… almost
We must deal with 3 problems: first 
the min value is not that small. It’s 
quite easy to reach when you start 
squaring small values in BRDFs. 
Note that we assume that GPUs 
don’t support denormals, or at 
least that we don’t want denormals.
The second issue is that the large 
value is only 65k or so. We’ll see 
why that’s an issue very soon
Finally we lose all fractional 
precision above 1024. This makes 
half float unsuited to store texture 
sizes or any kind of UVs, especially 
in screen space since on mobile 
resolutions are much higher. 
Obvious this is also an issue for 
vertex positions. For instance this 
would mean a resolution of 1 meter 
1km away from the origin. Not 
good.



roughness = clamp(roughness, 0.089, 1.0);

// we use x / (roughness^4) in our code 
// min value in fp16 → 2^-14 = 0.000061035 
// we want roughness^4 >= 2^-14 
// so min roughness = 2^(-14/4) ~= 0.089

So let’s take a look at how to use 
half precision floats in your shaders 
successfully
First make sure to clamp values so 
that you don’t end up with 
divisions by 0
For example here is how we clamp 
roughness to a minimum value. 
This number 0.089 comes from 
understanding the math we 
execute in the shaders…

float D_GGX_Anisotropic(float at, float ab, float ToH, float BoH, float NoH) { 

    float a2 = at * ab; 

    highp vec3 d = vec3(ab * ToH, at * BoH, a2 * NoH); 

    highp float d2 = dot(d, d); 

    float b2 = a2 / d2; 

    return a2 * b2 * b2 * (1.0 / PI); 

} 

    // at & ab → roughness^2, a2 → roughness^4 
    // The dot product below computes roughness^8 

    // → won’t fit in fp16 without clamping the roughness to 0.298 
    // → perform the dot product and the division in fp32

Sometimes however you don’t have 
a choice
Here is for instance the anisotropic 
NDF we use in Filament
Notice how we compute “d” and 
“d2” at high precision, with single 
precision floats. Why is that?

#define MEDIUMP_FLT_MAX       65504.0 
#define saturateMediump(x)    min(x, MEDIUMP_FLT_MAX) 

float V_SmithGGXCorrelated(float roughness, float NoV, float NoL) { 
    float v = // ... 
    return saturateMediump(v); 
} 

Here is another interesting 
example. Sometimes computations 
can tend to infinity, as is the case 
with this visibility term. 
Unfortunately on some mobile 
GPUs infinity leads to a black pixel. 
To avoid this we clamp the result to 
65,504



// GPU computation 
color = lightIntensity * cameraExposure * BRDF();

Here is one last problem. This is a 
simplified implementation of our 
lighting. Nothing crazy here
Unfortunately things are a little 
more complicated when we look at 
the possible values at play

// Intensity of the Sun in lux 
float lightIntensity = 110000.0f; 

// Exposure for a clear day: 
//   ƒ/16, 1/125s, ISO 100 
float cameraExposure = 0.000026042;

> max fp16 (65,504)

< min fp16 (0.000061035)

This code represents a typical 
setup with our physical light units
And there are two issues with those 
values
- the sun intensity is too large to fit 
in fp16
- the exposure is too small to fit in 
fp16

// CPU computation, using 32-bit floats 
float preExposedLightIntensity = 
    cameraExposure * lightIntensity; 

// GPU computation, using 16-bit floats 
color = preExposedLightIntensity * BRDF();

2.86462

The solution is quite simple, we 
simply pre-multiply light intensities 
on the CPU
In our example this yields a value 
that fits neatly in fp16 and our 
computations work just fine
In practice we store our lights pre-
exposed



Be careful

Using these techniques we’ve been 
able to write our shaders in fp16. It 
can be tricky to chase artifacts 
created by a computation in fp16 
but it’s worth the efforts. Falling 
back to fp32 is sometimes 
unavoidable, mostly when you deal 
with UVs/texture sizes and vertex 
positions, etc.

Faster* BRDFs

* Faster but more “wrong” :)

V(v, l, α) =
0.5

n ⋅ l (n ⋅ v)2(1 − α2) + α2 + n ⋅ v (n ⋅ l)2(1 − α2) + α2

a2b2 + c2 ≈ ab + c

Here is the height-correlated Smith 
NDF described by Eric Heitz in 
“Understanding the Masking-
Shadowing Function in Microfacet-
Based BRDFs”. It’s the term we use 
in our BRDF… at least on desktop. 
The two square roots are not ideal 
on mobile.
Let’s focus on one of those square 
roots
It’s the square root of a mad of 
squares, and all the terms are in 
the [0..1] range, so if we squint 
hard enough… we can remove the 
square roots :)



V(v, l, α) =
0.5

n ⋅ l(n ⋅ v(1 − α) + α) + n ⋅ v(n ⋅ l(1 − α) + α)

V(v, l, α) =
0.5

2(n ⋅ l)(n ⋅ v)(1 − α) + (n ⋅ v + n ⋅ l)α

And look, no more square roots, no 
more squares!

float V_SmithGGXCorrelated_Fast(float roughness, float NoV, float NoL) { 
    // Hammon 2017, "PBR Diffuse Lighting for GGX+Smith Microsurfaces" 
    return 0.5 / mix(2.0 * NoL * NoV, NoL + NoV, roughness); 
}

After simplification we end up with 
a simple lerp
This horror was described 
independently by Earl Hammon at 
GDC 2017
Note that we only use this 
approximation on mobile

Let’s take a quick look at clear coat
Clear coat is implemented as a 
second specular lobe on top of the 
base layer
It’s great to crate beautiful 
materials like this lacquered wood 
or coated carbon fiber, and it’s 
easy to implement too
But it’s a second BRDF to compute 
per light…



VclearCoat(l, h) =
1

4(l ⋅ h)2

For clear coat we replace the 
visibility term by another one, 
described by Kelemen
in the paper “A Microfacet Based 
Coupled Specular-Matte BRDF”
Eric Heitz has shown in his own 
paper, “Understanding the 
Masking-Shadowing Function in 
Microfacet-Based BRDFs”, that this 
term is not physically based
But it’s *cheap* and it still looks 
great, so we adopted it
We may revisit this decision since 
the simplified Visibility term shown 
previously isn’t that much more 
expensive

Tone mapping



Krzysztof Narkowicz has 
a popular fit of ACES

A few years ago Krzysztof  
Narkowicz popularized a fit of the 
ACES RRT+ODT for sRGB output

vec3 Tonemap_ACES(const vec3 x) { 
    // Narkowicz 2015, "ACES Filmic Tone Mapping Curve” 
    const float a = 2.51; 
    const float b = 0.03; 
    const float c = 2.43; 
    const float d = 0.59; 
    const float e = 0.14; 
    return (x * (a * x + b)) / (x * (c * x + d) + e); 
} 

Here is the implementation. It’s 
simple and straightforward, which 
probably explains its popularity
Especially compared to how 
complicated the ACES RRT+ODT 
are…

vec3 Tonemap_Mobile(const vec3 x) { 
    // Transfer function baked in, 
    // don’t use with sRGB OETF! 
    return x / (x + 0.155) * 1.019; 
} 

We propose a simple, extremely 
fast tone map operator that also 
approximates the sRGB transfer 
function.
It’s all kinds of “wrong” but it’s 
good enough for mobile
And it’s cheap
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Here is a comparison of the tone 
mappers with gamma 2.2

And a quick comparison of the 
ACES fit…

And the approximation for mobile
NOTE: As of Filament 1.8 we don’t 
use this anymore. We use a LUT for 
both tone mapping and color 
grading, with different tone 
mappers to choose from



Image-based lighting

Spherical harmonics
SH 2 or 3 bands for diffuse lighting

easy to compute offline & cheap to apply

looks great for low/medium dynamic range environments

We started, not surprisingly, with 
spherical harmonics.
We use either 2 or 3 bands for the 
diffuse component of indirect 
lighting
These SH are easy to compute and 
are dirt cheap to apply, especially 
with 2 bands
And importantly they yield great 
looking results for low to medium 
dynamic range

Here is an example of a scene with 
a rough, dielectric gray sphere lit 
by 2 bands SH
The environment is medium 
dynamic range, ~9 EVs
It looks great, it’s fast, we love it



Unfortunately spherical harmonics 
don’t fare so well in high dynamic 
range environments, here 21 EVs 
(the center of the sun has a value > 
300,000). This is not something 
you’d see in a game, or at least 
you’d want to remove the sun and 
use an analytical light instead (for 
shadows, etc.)
We can see 2 issues with 2 bands 
SH here:
-ringing
-and the back side of the sphere is 

completely wrong. It’s too dark 
but the light also wraps around 
the sphere

There are ways to improve the 
results with SH. First we can use 
more bands, and we can apply a 
low-pass filter to the spherical 
harmonics (“windowing”). Our 
implementation follows “Deringing 
Spherical Harmonics” by Peter-Pike 
Sloan, and you can see the result 
above. The ringing is gone but the 
back side of the sphere is still 
wrong; it looks like we use a wrap 
diffuse term.
This is is not good enough for us 
because some of our clients want 
to use such high dynamic range 



environments.

So Filament gives you a choice: you 
can use SH, or you can use a 
diffuse map. Here is the result of 
the same scene with diffuse 
lighting coming from a texture. The 
result is much better and much 
closer to that of an analytical 
directional light.

Diffuse map?
costs a sampler

more memory & storage

not worth it for us

So clearly a diffuse map gives 
better results, but is it what we 
want?
First, an extra texture means 
another sampler. We have a limit of 
16 samplers on mobile and 
because we use a forward renderer 
any sampler we use cannot be used 
by the user’s materials.
Of course, this also means more 
memory and storage for the app, 
although those are less of an issue 
as the diffuse map can be small 
(128x128 for instance). It’s still an 
extra texture to carry around



Ultimately we decided it wasn’t 
worth it

Specular map!
diffuse lighting ~ specular lighting at roughness=1

roughness 1.0 → cannot be 1x1 LOD

looks good enough

∑ L(l) ≈ ∑ ⟨n ⋅ l⟩ L(h)

So instead we use the specular 
map, or the preconvolved 
environment map
If you squint hard enough at the 
equation, the integration of the 
specular BRDF at roughness=1 is 
almost diffuse lighting. Besides our 
IBL already relies on the split-sum 
approximation, we can do funky 
stuff with the math :)
Of course this means we cannot 
map roughness=1 to the 1x1 LOD, 
otherwise we’d lose all details. In 
practice we use the 16x16 LOD

In practice, it looks like this. Now if 
you look at the terminator you’ll 
notice aliasing that appears in high 
dynamic range environments. 



On desktop we use a tent filter 
when sampling the “diffuse” map, 
to smooth the aliasing artifacts. It 
works well but it requires multiple 
samples so we don’t enable this 
feature on mobile. At high pixel 
densities and with textured objects, 
this is not an issue in practice. You 
can also use Spherical Harmonics 
instead if you want (but change 
your env map!)

Roughness mapping
256x256 to 16x16 → 5 mip levels

log2(roughness) + roughnessOneLOD

roughnessOneLOD * roughness * (2 − roughness)

I mentioned we want to use the last 
specular level, or 16x16 px, as our 
diffuse map. Since our first mip is 
256x256, we need to find a good 
mapping for the roughness that 
doesn’t waste high resolution mips.
Starting at 256x256 all the way to 
16x16, we have 5 mip levels
So we looked for a mapping that 
would give glossy surfaces the 
lowest mips
This is our empirical solution.
But in practice we use a quadratic 
fit instead to avoid a log2
This mapping works well for a good 
range of mip levels, up to 9



Roughness mapping
0 → 0.000

1 → 0.018

2 → 0.086

3 → 0.250

4 → 1.000

So here is our mip map to 
roughness in practice
The first 4 levels are used for 
roughness < 0.25
It works really well in practice since 
above roughness 0.25 lighting 
becomes very blurry

Here is a metallic ball with 
roughness varying from 0 to 1 
showcasing this remapping

Storing IBLs

R11G11B10F → swizzled as RGBA8

RGBM → quality issues

Filament doesn’t impose the format 
of the IBL. You can use RGB16F if 
you wish, or compressed texture 
formats. Unfortunately when 
targeting OpenGL ES 3.0 devices 
there’s no easy way to compress 
HDR textures.
Originally we were using RGBM, but 
it proved difficult to pick a shared 
multiplier that would work in all 
environments, and making it 
customizable would just create 
confusion in the asset pipelines
So instead we use R11G11B10F, 
and we simply swizzle the data as 



RGBA8 for storage, typically PNG 
files. You should of course not run 
any compression on that swizzled 
data, all the channels are correlated

Fixing metals

The Cook-Torrance BRDF we (and 
pretty much everybody) use models 
only a single bounce of light in the 
micro facets field.
This lead to a loss of energy 
particularly visible at high 
roughness. This cause metals in 
particular to get darker.



It makes sense intuitively. With a 
single bounce (left), a light ray is 
unlikely to espace the micro facets 
field.
If instead we model multiple 
scattering events (right), the light 
ray might be reflected toward the 
viewer

If we properly account for multiple 
scattering events, we can recover 
the lost energy and get metallic 
surfaces that behave a lot better
See the second row of spheres

The difference is even more 
impressive in a white furnace
There *are* two rows of spheres. 
The top one, with single scattering, 
shows how much loss we suffer
The second row reflects all 
incoming energy, as expected



We use a solution from 
 Lagarde & Golubev

Solution presented at SIGGRAPH 
2018

fr(l, v) = fss(l, v) + f0 ( 1
r

− 1) fss(l, v)

fr(l, v) = fss(l, v) + fms(l, v)

r = ∫Ω
D(l, v)V(l, v)⟨n ⋅ l⟩ dl

The idea is very simple, the 
specular lobe is the single 
scattering lobe (from your BRDF) + 
a multi scattering lobe
And the multi scatter lobe is itself a 
scaled version of the single 
scattering lobe
The term “r” happens to be what we 
compute in the DFG LUT for image-
based lighting!

const float V = Visibility(…) * NoL * (VoH / NoH); 
const float F = pow5(1.0f - VoH); 
r.x += V * (1.0f - F); 
r.y += V * F; 

When you compute your DFG LUT, 
your code will look similar to this
We store the importance sampled 
visibility term multiplied by Fresnel



const float V = Visibility(…) * NoL * (VoH / NoH); 
const float F = pow5(1.0f - VoH); 
r.x += V * F; 
r.y += V; 

The change is very simple, we store 
the visibility term directly

vec2 dfg = textureLod(dfgLut, vec2(NoV, roughness), 0.0).xy; 
// For image-based lighting 
vec3 iblSpecularColor = mix(dfg.xxx, dfg.yyy, f0); 

// For other lights 
vec3 energyCompensation = 1.0 + f0 * (1.0 / dfg.y - 1.0); 
Fr *= pixel.energyCompensation; 

Then we can simply apply the 
formula from earlier and scale our 
specular lobe
It’s cheap, easy to implement and 
produce beautiful results
There are other solutions that treat 
dielectrics and conductors 
separately but they are more 
expensive
We like this one for its simplicity 
and low cost

Rendering cloth



Filament offers a material model to 
create cloth & fabric, including 
satin, velvet, etc.
The cloth models lets you control 
the sheen color directly and the 
roughness works very differently 
than it does for regular materials

fr(v, h, α) =
Dvelvet(v, h, α)

4(n ⋅ l + n ⋅ v − (n ⋅ v)(n ⋅ l))

Dvelvet(m) =
(2 + 1

α )sin(θ)1
α

2π

For cloth we use the Ashikhmin 
BRDF modified by Neubelt & 
Pettineo for The Order 1886
However, our NDF is neither 
Ashikhmin’s nor the one from The 
Order (normalized Ashikhmin)
Instead we use the “Charlie” sheen 
BRDF from Estevez and Kulla 
presented at SIGGRAPH 2017
It is softer, cheaper and provides a 
more natural control over the 
roughness

DFG LUT DFG LUT with cloth BRDF

However, because we use a 
different BRDF, we cannot use the 
DFG LUT as it
That LUT is computed for the 
regular Cook-Torrance BRDF with 
GGX NDF and Fresnel term, which 
looks completely different
—> !!NOTE: The DFG LUT shown 
above is the single-scattering LUT 
because you may be more familiar 
with it
If you recall the previous slide, the 
cloth BRDF does not have a Fresnel 
term, so we only need 1 channel to 
store the cloth BRDF in the LUT



We use the green channel for that 
purpose
We found, just like Estevez & Kulla, 
that uniform sampling works well 
to generate that LUT

static float DFV_Charlie_Uniform(float NoV, float roughness, size_t numSamples) { 
    float r = 0.0f; 
    const float3 V(std::sqrt(1.0f - NoV * NoV), 0.0f, NoV); 

    for (size_t i = 0; i < numSamples; i++) { 
        const float2 u = hammersley(uint32_t(i), 1.0f / numSamples); 
        const float3 H = hemisphereUniformSample(u); 
        const float3 L = 2 * dot(V, H) * H - V; 
        const float VoH = saturate(dot(V, H)); 
        const float NoL = saturate(L.z); 
        const float NoH = saturate(H.z); 

        if (NoL > 0.0f) { 
            const float V = VisibilityAshikhmin(NoV, NoL, roughness); 
            const float D = DistributionCharlie(NoH, roughness); 
            r += V * D * NoL * VoH; 
        } 
    } 

    return r * (4.0f * 2.0f * (float) F_PI / numSamples); 
}

Just for reference, here is the code 
to generate the 3rd channel in the 
LUT

One thing left is the convolution of 
the environment maps…
Technically we should have a 
separate convolution of each IBL 
because the BRDF is different
This is however not practical in 
terms of storage, memory and 
performance on mobile so we reuse 
the same convolution
It is wrong but good enough



Multi-bounce AO

The way we render ambient 
occlusion suffers from a similar 
issue we saw earlier for metals that 
darken at high roughness: we only 
take direct visibility into account.
Thankfully Jimenez offers a great 
solution in Practical Real-Time 
Strategies for Accurate Indirect 
Occlusion, from SIGGRAPH 2016 
(GTAO)

First, let’s see what it does
Here is a scene with regular 
ambient occlusion (note we are not 
using skin shading in this example)

And here is the same scene with 
multiple light bounces modeled in 
the ambient occlusion term. Note 
the area around the eyes or the 
ears. This solution offers both a 
more accurate AO term but is also 
introduces colored indirect 
illumination which provides a more 
natural and less dull appearance



vec3 gtaoMultiBounce(float visibility, const vec3 albedo) { 
    // Jimenez et al. 2016, 
    // “Practical Realtime Strategies for Accurate Indirect Occlusion" 
    vec3 a =  2.0404 * albedo - 0.3324; 
    vec3 b = -4.7951 * albedo + 0.6417; 
    vec3 c =  2.7552 * albedo + 0.6903; 

    return max( 
        vec3(visibility), ((visibility * a + b) * visibility + c) * visibility 
    ); 
} 

diffuseLobe *= gtaoMultiBounce(ao, diffuseColor); 

The best part is that the 
implementation is cheap and 
simple. It’s a polynomial fit found 
by the Activision team and it’s 
trivial to integrate in an engine. 
This feature is optional per material 
in Filament and is well worth 
turning on for some assets

Specular anti-aliasing

Our main AA techniques are MSAA 
and FXAA. It is however sometimes 
not enough, and for those 
situations we offer an optional 
material feature to enable specular 
anti-aliasing

Here is an example of a glossy 
dielectric material
I used a low albedo to make the 
specular highlights a little easier to 
see



If we zoom out, the highlights get 
lost due to aliasing
If we go back and forth… we can 
that we lose the same of some 
highlights, like the one on the 
chest

Now here is the same model with 
specular antialiasing turned on

And if we go back and forth… 
<FLIP> we properly retain all the 
highlights



float normalFiltering(float perceptualRoughness, const vec3 worldNormal) { 
    // Kaplanyan 2016, "Stable specular highlights" 
    // Tokuyoshi 2017, "Error Reduction and Simplification for Shading Anti-Aliasing" 
    // Tokuyoshi and Kaplanyan 2019, "Improved Geometric Specular Antialiasing" 
    vec3 du = dFdx(worldNormal); 
    vec3 dv = dFdy(worldNormal); 

    float variance = specularAntiAliasingVariance * (dot(du, du) + dot(dv, dv)); 

    float roughness = perceptualRoughnessToRoughness(perceptualRoughness); 
    float kernelRoughness = min(2.0 * variance, specularAntiAliasingThreshold); 
    float squareRoughness = saturate(roughness * roughness + kernelRoughness); 

    return roughnessToPerceptualRoughness(sqrt(squareRoughness)); 
} 

materialRoughness = normalFiltering( 
        materialRoughness, getWorldGeometricNormalVector()); 

To implement this we use a 
solution originally devised by Anton 
Kaplanyan in 2016, later improved 
by Yusuke Toyushi in 2017, and 
improved again by both of them in 
2019

The main idea is to vary the 
roughness based on local 
curvature, or variance of the 
geometric normal, to filter the NDF. 
The papers cited above present two 
techniques: one for DEFERRED, and 
one for FORWARD. The forward 
technique is expensive, with a 
multiplication by a tangent frame 
for every light. Instead we use the 
deferred variant in forward, 
modifying the material roughness 
once. It works really well and the 
cost is sometimes worth it.

// specularAntiAliasingVariance 
and specularAntiAliasingThreshold 
are two uniforms, our defaults are 
respectively 0.15 and 0.2

Ambient occlusion



Scalable Ambient Obscurance
excellent quality → only 7 samples

great performance → 2.3ms @ 1080p on Pixel 4

We use an algorithm called Scalable 
Ambient Obscurance by Morgan 
McGuire 
We chose it because it delivers 
great quality even with a limited 
number of samples
But it also offers great performance 
on mobile
Given how much it can improve the 
visuals, this effect is well worth the 
cost
NOTE: during this pass we create a 
mip chain of depth buffers, which 
can be reused for other effects like 
depth of field

Here is an example of a scene 
without SSAO…

And with SSAO
This is our lowest quality — 7 
samples — and it gives very good 
results



Our changes
interleaved gradient noise → cheaper

constant spiral angle → avoid sin/cos

face normals from depth → without derivatives

fp16 friendly → cheaper

We change the noise pattern for a 
simpler, cheaper one
the sampling pattern is a spiral, we 
made the angle constant to avoid 
sin/cos. These are EFU instructions 
on Qualcomm GPUs which have 
higher latency and/or cost more 
power
We don’t reconstruct normals using 
derivatives. We can only count on 
partial derivatives on mobile and 
this helps us compute normals at 
full resolution
And finally our code tries to do 
everything in fp16 of course

Job system

We’re going to use this scene as an 
example, on a Pixel 4 (screenshot 
from desktop viewer)
It’s the Amazon Lumberyard Bistro 
scene (https://
developer.nvidia.com/orca/
amazon-lumberyard-bistro)
Multiple lights, some cast shadows, 
some don’t



Render
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Driver

N

Here is a simplified version of the 
job system used in Filament
Every block represents a new 
parented Job, which itself can 
spawn N jobs
Effectively every loop in this system 
is multi-threaded and jobified
It scales naturally to the number of 
cores in the machine
We use it for EVERYTHING
Our implementation is HEAVILY 
influenced by Stingray’s

Render loop 
Driver thread

1.15ms 
8.5ms

The render loop includes: culling, 
sorting per pass (shadow/color)
It also includes froxelization for the 
lights
In this scene we end up with 200 
visible objects (200 draw calls) and 
multiple render passes (shadow 
maps, color pass, post process)

Here you can see the job system in 
action when we load the scene
It maximizes CPU occupancy (8 
cores in this case, 4 big and 4 little)
Note it pins the driver thread (blue 
blocks at the bottom) to a big core



do { 
    if (!execute(*state)) { 
        std::unique_lock<Mutex> lock(mWaiterLock); 
        while (!exitRequested() && !hasActiveJobs()) { 
            wait(lock); 
            setThreadAffinityById(state->id); 
        } 
    } 
} while (!exitRequested()); 

Here is code at the core of our 
JobSystem, the loop run by every 
thread

do { 
    if (!execute(*state)) { 
        std::unique_lock<Mutex> lock(mWaiterLock); 
        while (!exitRequested() && !hasActiveJobs()) { 
            wait(lock); 
            setThreadAffinityById(state->id); 
        } 
    } 
} while (!exitRequested()); 

Every time a thread wakes up we 
reset its affinity
We do this because CPUs can be 
unplugged on Android which resets 
the affinity
By setting the affinity we can pin a 
thread to a given core, thus 
avoiding hops between cores which 
are costly

// Highest affinity bit, assuming this is a big core 
// This core is not used by the JobSystem 
uint32_t id = std::thread::hardware_concurrency() - 1; 

while (true) { 
    JobSystem::setThreadAffinityById(id); 
    if (!execute()) { 
        break; 
    } 
} 

The JobSystem always leaves a core 
available, and we guess it’s a big 
core using the higher affinity bit
Again we do this every time we 
wake up the driver thread to reset 
the affinity if we lost it



void JobSystem::setThreadAffinityById(size_t id) noexcept { 
#if defined(__linux__) 
    cpu_set_t set; 
    CPU_ZERO(&set); 
    CPU_SET(id, &set); 
    sched_setaffinity(gettid(), sizeof(set), &set); 
#endif 
}

For reference, here is the 
implementation of 
setThreadAffinity()

Thank you!

@romainguy
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Physically based rendering in Filament, Guy & Agopian 
https://google.github.io/filament/Filament.html

Scalable Ambient Obscurance, McGuire, 2012 
https://casual-effects.com/research/McGuire2012SAO/index.html

PBR Diffuse Lighting for GGX, Hammon, 2017 
https://www.gdcvault.com/play/1024478/PBR-Diffuse-Lighting-for-GGX

The road toward unified rendering with Unity’s high definition 
rendering pipeline, Lagarde & Golubev, 2018 
http://advances.realtimerendering.com/s2018/index.htm



Crafting a Next-Gen Material Pipeline for The Order: 1886, 
Neubelt & Pettineo, 2014 
https://www.gdcvault.com/play/1020162/Crafting-a-Next-Gen-Material

Production Friendly Microfacet Sheen BRDF, Estevez & Kulla, 2017 
http://www.aconty.com/pdf/s2017_pbs_imageworks_sheen.pdf

Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs, 
Heitz, 2014 
http://jcgt.org/published/0003/02/03/paper.pdf

Practical Real-Time Strategies for Accurate Indirect Occlusion, Jimenez, 2016 
https://blog.selfshadow.com/publications/s2016-shading-course/

Stable Specular Highlights, Kaplanyan, 2016 
http://developer.download.nvidia.com/gameworks/events/GDC2016/akaplanyan_specular_aa.pdf

Error Reduction and Simplification for Shading Anti-Aliasing, Tokuyoshi, 2017 
http://www.jp.square-enix.com/tech/library/pdf/Error%20Reduction%20and%20Simplification%20for%20Shading%20Anti-Aliasing.pdf

Improved Geometric Specular Antialiasing, Kaplanyan & Tokuyoshi, 2019 
http://www.jp.square-enix.com/tech/library/pdf/ImprovedGeometricSpecularAA.pdf

HDRIs/environments 
https://hdrihaven.com/

Textures 
https://texturehaven.com/ & https://www.cgbookcase.com/

glTF Samples 
https://github.com/KhronosGroup/glTF-Sample-Models

Amazon Lumberyard Bistro 
https://developer.nvidia.com/orca/amazon-lumberyard-bistro



Lee Perry-Smith Head Scan 
http://graphics.cs.williams.edu/data/  

Statue (“Lucy”) by Stanford Computer Graphics Laboratory 
http://www.graphics.stanford.edu/data/3Dscanrep/#uses


