
Good afternoon, everyone. I'm Shun from Tencent Games. Today, I'd like to talk 
about a mobile friendly global illumination solution standing out from the traditional 
voxelizations.

1



Before diving into any technical details, it might be helpful to look back at why we 
need to do this and what happened behind the stage.

2



As we all know, offline baking solutions are very popular in mobile game engines. Our 
motivation at the very beginning was to deliver a real-time GI solution, which does 
not need baking and can achieve various advanced lighting effects, enabling us to 
create fully dynamic game scenes on today's mobile devices.

3



We have seen many real-time global illumination solutions shining on Console and 
PC. We have carefully studied their PROs and CONs and learned from them while 
developing our own solution.

4



Thanks to all the analyses, we believe that the following factors are important when 
implementing any mobile GI, such as GPU bandwidth, memory usage, mobile 
hardware capabilities, and power consumption. We all know that there is still a 
significant gap between mobile and desktop GPU bandwidth capacities, which 
matters to performance and power consumption. Memory usage is also crucial; 
excessive memory footprint can easily lead to a crash. Although high-end mobile 
GPUs now support raytracing, many devices in the market are left behind. Higher 
power consumption means battery drainage and overheating coming much earlier, 
which downclocks the GPU with worse performance.

5



With a considerable amount of learning and struggling, we finally reached the point 
that a brand new voxel-based algorithm is coming up. It was built on the efficient 
sparse octrees and cache-friendly clipmaps to achieving a multi-level voxel-based 
scene representation.

6



Now, let's dive into some of the most interesting implementation details.

7



Here is the overall architecture diagram of the solution, which consists of three main 
parts: Bricklizer, FinalGather, and Lighting Composition. Bricklizer is our approach to 
achieving hierarchical voxelization. FinalGather is the process of collecting indirect 
lighting. The final lighting composition process is relatively simple, involving the 
overlaying of direct and indirect lighting.

8



First, let's take a look at the overall process of Bricklizer. On the CPU side, we 
generate candidate blocks, referred to as bricks, based on the visible range. These 
candidate bricks are placed in a candidate queue, and a fixed number of bricks are 
voxelized each frame based on a certain priority. After voxelization, we have a 
process to repair and optimize the voxelization, such as filling holes in specific 
directions of the voxels and eliminating invalid faces between two voxels. Once the 
brick voxelization is complete, we perform lighting injection, including sampling 
direct light sources and reflecting light from other voxels onto the current voxel. 
Finally, we can use the HDDA algorithm to calculate the radiance of the screen 
probes.

9



The core data structure in the CPU is illustrated as follows. During initialization, two 
allocators are initialized based on the given texture sizes of BrickMappingAtlas and 
BrickVisFacesAtlas, and an array is created by stringing together the Bias as the base 
elements. Some important parameters in Brick are:
AtlasBias: The Bias obtained from BrickAllocator, used for mapping to 
BrickMappingAtlas.
PageList: Maintains the PageBias of several Bricks in VisFacesAtlas in the form of an 
array.
bAllocated: Indicates whether space has been allocated and is also used to 
distinguish whether capture is complete.
bRemove: Bricks exist in three lists in the form of smart pointers. If a brick needs to 
be deleted, set this flag to 1, and then delete it from the BricksTable. The other two 
lists will check this flag before processing. PrimitiveList contains all the primitives 
intersect with the brick.

10



The resource organization structure in the GPU is illustrated as follows. For the 3D 
scene shown, BrickTexture stores the actual storage locations of each Brick with a 
value in BrickMappingAtlas. The default configuration is that each Brick covers a 
range of 4x4x4 m, with a total coverage of 512x512x128 m. BrickMappingAtlas stores 
data in Voxel units, where each Voxel stores a mapping pointer to the next level, 
composed of 32 bits. 26 bits are used to represent x and y-axis offsets, and 6 bits 
indicate the presence or absence of each face. The actual storage carrier for each 
voxel face is a 2D Atlas called BrickVisFacesAtlas, which tightly stores every valid face 
(where the adjacent voxel is empty or translucent). Only the last page of each Brick 
may contain intra-page fragments, so the space utilization is extremely high. The 
following two 3D Textures are auxiliary structures for HDDA Tracing. Among them, 
BrickGroupTexture uses 4x4x4 Bricks as a composition unit, with each grid storing a 
64-bit BitMask used to indicate the presence or absence of Bricks. Similarly, 
BrickBitMask uses BitMask to represent the presence or absence of corresponding 
voxels.

11



Besides full updates caused by entering the scene or BrickReset, only two changes 
can lead to Brick updates: one is the addition of Bricks caused by camera movement, 
and the other is updates caused by Mesh changes, including Mesh deletion, addition, 
and movement. Full updates and camera movement updates can be attributed to 
updates based on bounding boxes, requiring normalization of the bounding boxes to 
ensure that their boundaries align with Brick boundaries. Then, for each BrickPos 
inside, use BricksTable to determine whether the corresponding Brick exists. If not, 
add it to the BrickPosSet.

Next, obtain the updated bounding box of the Mesh, expand it to align its boundaries 
with Brick boundaries, and then iterate through BrickPos. If it already exists, it needs 
to be cleared and regenerated. If it does not exist, add it to the BrickPosSet for 
subsequent processing. All Bricks waiting for updates are added to the BrickPosSet, 
and then multithreading is used to initially cull Meshes, retaining only those 
intersecting with the updated bounding box. Then, multithreading is used to traverse 
all Bricks and Primitives. After traversal, each Brick will have its own Mesh list, and 
Bricks that do not intersect with Meshes can be deleted. The rest are added to 
CandiateBricks. In the above steps, Bricks that need to be deleted in this frame will 
also be added to DirtyBricks for processing.

12



After updating the Bricks, it is necessary to select k Bricks from the CandiateBricks for 
updating in the current frame. The selection strategy can rely on factors such as the 
distance from the camera or the distance within the view frustum. As shown in the 
figure below, priority should be given to updating the bricks within the view frustum, 
followed by bricks closer to the camera. After the selection, it is essential to ensure 
that there are remaining Bricks and Pages in both Allocators. If there are not enough, 
it will trigger the recycling process or memory expansion logic. The recycling process 
will reclaim the space of all Bricks outside the update range. Memory expansion will 
double the size of BrickMappingAtlas or BrickVisFacesAtlas, and an additional pass 
will be required to move the original Atlas data to the corresponding locations.

13



The voxelization process currently has significant optimization potential and is also 
the most time-consuming part. In the current strategy, each brick generates a 
corresponding MeshDrawCommand based on its Mesh list. Each Brick then 
undergoes voxelization in three directions, and the results are temporarily written 
into a temporary 3D texture generated in the current frame for subsequent 
processing. When voxelizing, it is advisable to combine MultiView and voxelize in 
three directions simultaneously to reduce DrawCalls and other operations.

14



Each brick is pre-allocated with 6 to 8 pages, and each page occupies 8x8 pixels. The 
compression and allocation of all valid faces for voxels within a brick are handled 
here. The specific bias for each voxel's visface is tightly arranged within these pages, 
ensuring that only the last page may have unused space. If the 8 pages are 
insufficient, we will feedback to the CPU to request additional pages. The purpose of 
using large-grained pages for allocation is to facilitate efficient page recycling.

15



Lighting calculations can be divided into two parts for processing: direct lighting and 
indirect lighting.
Before calculating direct lighting for each frame, k Bricks are selected from a 
candidate list to undergo direct lighting computations. The selection can be based on 
sorting factors such as their position within the view frustum or their distance from 
the camera.

16



Prior to the direct lighting calculation, to maximize hardware utilization, all valid 
faces within a brick are compacted into a VisBuffer. As illustrated in the diagram 
below, the upper half depicts the compaction logic. Since the BrickMappingAtlas 
already stores the storage information for each face corresponding to a voxel, this 
value can be directly retrieved. If a voxel exists and has three valid faces, three 
consecutive spaces are requested from the Allocator, and the index values of these 
valid faces in the VisFacesAtlas are written into the buffer.
Based on the Allocator, the number of thread groups can be determined, with each 
thread handling one valid VoxelFace. The basic material properties are fetched from 
the BrickAtlas. If the ShadowMap is valid, a direct sample can be taken; otherwise, a 
separate ShadowRay needs to be cast to determine if the point is in shadow. 
Subsequently, direct lighting is calculated based on factors such as normal weights, 
light source type, and material information. Finally, the results are written into the 
LightingAtlas.

17



Multi Bounces:
The process for indirect lighting calculations is similar to direct lighting. First, k Bricks 
requiring radiance updates in the current frame are identified. Then, the indices of 
the effective faces of these Bricks are compacted into a Buffer to facilitate 
subsequent GPU thread group and thread allocation. For each effective face, n rays 
are emitted in hemispherical directions, and the collected results are weighted and 
averaged to calculate the Irradiance and store it.

18



Utilizing BrickGroupBitMask and BrickBitMask, the HDDA algorithm can be 
implemented, enabling fast raycasting and intersection detection. The specific 
processing logic is as follows:
Starting Point Offset: When a ray originates from a starting point, the starting point 
needs to be translated outward along the ray direction to the surface of a voxel for 
tracing, avoiding self-intersection.
BrickGroupTracing: Based on the starting point's position, the corresponding 
BrickGroup is located. If the Group exists, the corresponding 64-bit BitMask is 
retrieved.

19



Here are the default config variables.The default voxelsize is 0.5 meters,there are 
8x8x8 voxels in one brick,thus one brick covers the range of 4 meters.There are 
4x4x4 bricks in one brickgroup,so the brickgroup covers the range of 16 meters.We 
have the number of 32x32x8 brickgroups ,so the we can cover 512x512x128 meters.

20



Here is the Pseudocode how we get lighting data from brick and 
visfacelightingatlas.First raymarching is in bricks levels with brickgroupbitmask.Then 
the voxels level raymarching.Each raymarching process use 64bits to check 64 bricks 
or voxels is presence or not.

21



the Pseudocode how we get valid brick from brickmask.and raymarching on voxel 
level is similar.

22



Firstly, it is necessary to identify which faces need to be repaired. To briefly explain 
the concept of effective faces: simply put, only observable faces are considered 
effective. As shown in the figure below, FaceS is the overlapping face between Voxel 
A and Voxel B. If B is an empty voxel or a semi-transparent voxel (i.e., Opacity < 1), 
FaceS can be considered visible and is thus an effective face. For each non-empty 
voxel, if there are effective faces and some of these faces are empty, they are added 
to a buffer waiting for subsequent repair processing.
Specifically, there are two options for repair. Repairs will prioritize searching and 
patching within a 3x3 grid of faces based on the plane the face resides in, retrieving 
its Albedo and Normal for filling. Another simpler and more direct option is to 
directly take the weighted average of the Albedo of other faces belonging to the 
same voxel as this face's Albedo, and the Normal can be obtained by rotating the 
Normals of other faces (or simply selecting the orientation of the voxel face as the 
normal direction—the effect is basically correct and without light leakage).

23



During camera movement, if it is detected in a frame that the updated bounding box 
exceeds the range of the mapped bounding box, the corresponding reprojection logic 
needs to be executed. On the CPU, all Bricks are traversed, and those that exceed the 
new mapped bounding box are deleted. At the same time, basic parameters such as 
AtlasOrigin need to be updated. On the GPU, only the corresponding BrickTexture 
and HDDAStruct need to be updated. An offset is calculated for the remaining Bricks 
and passed as a parameter to the ReprojectionPass, shifting the corresponding Bricks 
accordingly.

24



I am done with the detailed introduction of our algorithm, now let's take a look at 
how the test result in the real world may look like.

25



Here, we have used the 2023 flagship mobile devices to test VXGI and BrickGI. As you 
can see, our BrickGI only needs less than 30MB of memory for a spherical volume 
with a radius of 512 meters. In contrast, the traditional clipmap approach take more 
than 50MB. Furthermore, in terms of performance, we can complete all the GI 
calculations within 2ms.

26



Here is the detailed memory usage of the voxelization method based on clipmap, 
which is approximately 50MB.

27



Here is the detailed memory usage of our voxelization method based on the latest 
bricklizer technology. It consumes approximately 30MB of memory, and the scene 
coverage is twice that of a 4-level clipmap, reaching up to 512 meters.

28



Let‘s wrap up the advantages and possible future improvements of our algorithm.

29



The advantages of the system include a more efficient data storage rate that leads to 
lower memory usage, enabling a higher-precision representation of the scene. 
Furthermore, it is designed to be more compatible with the GPU cache, eliminating 
the need for hardware-based ray tracing and thus reducing the number of ray tracing 
calculations required.
However, there are also some disadvantages, such as its inability to handle mirror 
reflections effectively and difficulties in adapting to changes with huge objects. 
Looking ahead, our future plan involves implementing strategies to reduce overdraw, 
incorporating multiple light injections, and compressing textures. These 
enhancements will be particularly useful when evaluating Radiosity using the Mean 
Squared Error Metric (MSME), aiming to improve both performance and accuracy.

30



Thank you for your time. Feel free to reach out to me if you have any further 
questions.

31


	幻灯片 1: MOVING MOBILE GRAPHIC
	幻灯片 2: INTRODUCTION
	幻灯片 3: INTRODUCTION
	幻灯片 4: INTRODUCTION
	幻灯片 5: INTRODUCTION
	幻灯片 6: INTRODUCTION
	幻灯片 7: METHODOLOGY
	幻灯片 8: ARCHITECTURE
	幻灯片 9: BRICKLIZER
	幻灯片 10: BRICKLIZER
	幻灯片 11: BRICKLIZER
	幻灯片 12: BRICKLIZER
	幻灯片 13: BRICKLIZER
	幻灯片 14: BRICKLIZER
	幻灯片 15: VISFACECOMPACT
	幻灯片 16: BRICKLIZER
	幻灯片 17: BRICKLIZER
	幻灯片 18: BRICKLIZER
	幻灯片 19: BRICKLIZER
	幻灯片 20: BRICKLIZER
	幻灯片 21: BRICKLIZER
	幻灯片 22: BRICKLIZER
	幻灯片 23: BRICKLIZER
	幻灯片 24: BRICKLIZER
	幻灯片 25: RESULTS
	幻灯片 26: TEST RESULT DATA
	幻灯片 27: TEST RESULT DATA
	幻灯片 28: TEST RESULT DATA
	幻灯片 29: CONCLUSION
	幻灯片 30: CONCLUSION
	幻灯片 31: THANKS

