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This is the agenda for this talk. 
 
The main focus on this talk is about bandwidth-efficient rendering. So first I’ll talk a 
bit about on-chip rendering and how that can help reduce memory bandwidth and 
increase performance. 
 
Then I’ll talk about the challenges of post-processing in mobile, and will specifically 
talk about bloom and blur filters and how to optimize that with bandwidth-efficiency 
in mind. 
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So, first on-chip rendering. 
In order to enable more efficient on-chip rendering we have introduced a couple of 
extensions: framebuffer fetch and pixel local storage. 
 
But why extensions? Aren’t mobile GPUs already bandwidth efficient? 
 
Historically the graphics APIs have been designed around the premise of immediate-
mode architectures, and as such a lot of the benefits of tile-based architectures have 
been left out of the core APIs – that’s why we’ve introduced these extensions, and 
that’s why we encourage developers to use them. 
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Framebuffer fetch is a fragment shader extension that allows you to read the 
previous color value. We’ve also got a similar extension for reading the previous 
depth and stencil values. 
 
This is useful for programmable blending and programmable depth/stencil testing. 
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Pixel Local Storage, or PLS, is a general purpose storage that is persistent throughout 
the lifetime of the frame. You can read and write to it, and the storage stays on-chip. 
Storage layout is declared per fragment shader, so there’s no dependency on the 
current framebuffer format. This also makes it easy to re-interpret PLS values 
between fragment shader invocations. 
 
PLS is useful for things like deferred shading, order independent transparency and 
also volume rendering. 
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A bit simplified, this is what the rendering pipeline looks like when using PLS. 
 
There are two paths from the fragment shader to the tilebuffer - one through the 
fixed function blender and one that allows direct read/write access to the tilebuffer. 
 
(Note that all operations on the PLS happen in fragment submission order. Also PLS 
and color share the same memory location – so writing to one of them will discard 
the other.) 
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One of the powerful features of PLS is that it allows you to re-interpret data between 
fragment shader invocations – so you can basically repartition your storage mid-
frame. This makes it possible to chain things like deferred shading with order 
independent transparency. 
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But, one of the limitations of Pixel Local Storage is that access is restricted to the 
current pixel, so for doing complicated post-processing effects you need to rely on 
more conventional data flows. Which leads me to post-processing. 
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High-end mobile devices typically have small displays with massive resolution, so 
rendering at native resolution is often out of the question – especially if you also 
want to do post-processing. 
 
A solution to that is to do mixed resolution rendering. Render as low as you can 
without sacrificing visual quality, and then upscale. 
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These are the typical post-processing effects used in mobile content today. 
 
Note that most AAA mobile games only use a subset of these post-processing effects, 
but we have seen engines that combine things like SSAO, anti-aliasing, bloom and 
depth of field in mobile. 
 
Since PLS is limited to only accessing the current pixel, it will only benefit things like 
color grading and tonemapping. Other algorithms have more complex pixel 
dependencies which forces us to go beyond the current pixel. 
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So for this talk I chose to focus on Bloom, since it’s quite the opposite of what you 
can do with PLS – it goes wide, it’s bandwidth heavy and complex. 
 
Bloom is often implemented in multiple passes by first extracting the brightest part of 
the rendered image, then blur this part and finally composite it all. 
 
There’s some overlap in these passes so we can combine for instance the threshold 
pass with the first blur pass in order to exchange some bandwidth for ALU. But it’s the 
blur pass that’s really interesting. Also, since the bloom itself doesn’t really have to be 
physically correct we have some freedom to get creative with the blur algorithm. 
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So what makes a blur filter good? Quality obviously plays an important role, but also 
stability. We don’t want a blur filter that is unstable with slight changes in rendered 
image. 
 
So the goal was “simple”: come up with a high quality and stable blur filter with the 
least amount of samples. Quality for the bloom can also be highly subjective, so there 
is some headroom here. 
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So first some quick background of different blur filters. The simplest one of all is the 
box filter. This filter basically just sums up all samples inside a “box” and stores the 
average. 
 
One step further, we have the separable version of the box filter. This works by doing 
horizontal and vertical sums in separate passes, and this can greatly reduce the 
number of samples required. A 5x5 blur can for instance be reduced from 25 samples 
to just 10 – but at the extra cost of more write-out bandwidth. 
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One of the problems with the box filter is that, since all the samples are given equal 
weight, the shape of the blurred output appears blocky. One way around that is to 
apply the box filter twice, but that requires more processing and more bandwidth. 
Another way could be to apply a circular shaped filter, but that wouldn’t be 
separable, so you would have to do a lot of samples. 
 
A better solution is to use gaussian blur. Gaussian blur works by convolving a gaussian 
function over the image – and just like the box filter, this filter is separable so you can 
reduce the number of samples by doing separate horizontal and vertical passes. 
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One of the neat things with modern GPUs is that they have fixed function support for 
doing bilinear filtering. This is something we can exploit when filtering by offsetting 
the sample positions as well as the gaussian weights. 
 
In this sample we have effectively reduced the number of required samples from 9 to 
5, while at the same time keeping the visual quality. 
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But we can’t do all that filtering at high resolution, so we need a way to downsample 
and upsample the image. The basic idea is to first downsample, and at each step 
make sure you propogate all pixel values to avoid instability – then apply the blur at 
reduced resolution before finally upsampling the image. 
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But this gets very complicated when using separable kernels as can be seen by this 
diagram. 
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The Kawase blur is a solution to that problem. It works in multiple passes, preferably 
at reduced resolution, by sampling four corners at increasing distance from the 
current pixel – basically ping-ponging between two equally sized textures. 
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And this produces some very nice results. Here we have an input image in the top left 
corner – note that the red, green and blue pixels are really bright in this case. 
 
For each pass we sample further and further away from the center until we get the 
result we want. 
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For lack of a better name, Dual filter, is something I came up with when playing with 
different downsampling and upsampling patterns. It is derived from the Kawase filter, 
but where Kawase ping-pongs between two equally sized textures, this new filter 
does downsampling and upsampling. “Dual filtering” uses different filtering kernels 
for the downsample and upsample passes – but the sampling distance is constant. 
 
The downsample filter works by sampling four pixels covering the target pixel. Four 
samples on the corners are sampled in order to smudge in some information from all 
neighbouring pixels. This makes it a total of 5 samples - we can make use of bilinear 
filtering HW by sampling between the 4 samples. 
 
The upsample filter works by reconstructing information from the downsample pass. 
This pattern was chosen in order to get a nice smooth circular shape. Other shapes 
can also be used if you want a more artistic look. You can also tweak the distance 
from the target pixel to the sampling points to get a bigger or smaller blur. 
 
 
vec4 downsample(vec2 uv, vec2 halfpixel) 
{ 
  vec4 sum = texture(tex, uv) * 4.0; 
  sum += texture(tex, uv – halfpixel.xy); 
  sum += texture(tex, uv + halfpixel.xy); 
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  sum += texture(tex, uv + vec2(halfpixel.x, -halfpixel.y); 
  sum += texture(tex, uv – vec2(halfpixel.x, -halfpixel.y); 
  return sum / 8.0; 
} 
 
vec4 upsample(vec2 uv, vec2 halfpixel) 
{ 
  vec4 sum = texture(tex, uv + vec2(-halfpixel.x * 2.0, 0.0)); 
  sum += texture(tex, uv + vec2(-halfpixel.x, halfpixel.y)) * 2.0; 
  sum += texture(tex, uv + vec2(0.0, halfpixel.y * 2.0)); 
  sum += texture(tex, uv + vec2(halfpixel.x, halfpixel.y)) * 2.0; 
  sum += texture(tex, uv + vec2(halfpixel.x * 2.0, 0.0)); 
  sum += texture(tex, uv + vec2(halfpixel.x, -halfpixel.y)) * 2.0; 
  sum += texture(tex, uv + vec2(0.0, -halfpixel.y * 2.0)); 
  sum += texture(tex, uv + vec2(-halfpixel.x, -halfpixel.y)) * 2.0; 
  return sum / 12.0 
} 
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And here’s the result of this filter. This algorithm gives us a blurred output that is 
equivalent to the output from the Kawase filter, but at much less cost. 
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So next we’re going to compare different aspects of these different filters. 
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For this comparison I set up all the filters to do a 97x97 or equivalent blur, and 
gaussian is used as a reference. 
 
The Kawase blur is setup to first downsample to 1/16th resolution, then it does 9 
passes with increasing distances. You can notice that 4 is duplicated – I found that to 
produce better quality than just doing increments. 
 
Dual filtering is setup to do 8 passes, so that means 4 downsample passes and 4 
upsample passes. 
 
The naïve method relies on mipmap generation to produce the blurred output. 
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The input image here is a 1080p screenshot from our internal graphics engine. 
 
The top row shows the whole image, while the bottom row shows a zoomed in part 
of the image. As you can see the output is very similar – only very small variations 
exist. 
 
The peak-signal-to-noise ratio show that the Kawase filter is slightly better than 
“Dual” filtering compared to the reference – but these are very minor differences. 
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Next up is a stability comparison of the different filters. 
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The input image here is a blocky grayscale image that is translated diagonally using 
sub-pixel increments. 
 
From the result of the different filters you can see they all perform really well in this 
case – all fluid movement. 
 
Notice that the naïve mipmap generation implementation suffers from blocky 
artefacts here. 
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Next we have the same input image as the previous slide, but we’ve also added a 
single really bright pixel in the center of one of the blocks. 
 
As you can see there are slight differences in the output of the different filters, but 
the stability is very good – except for the naïve implementation which really suffers 
here. 
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Finally we have a more complete setup. In this test we have an input image with a 
bright square rotating behind some grey bars. We extract the brightest parts of the 
image, blur it and finally composite it. 
 
As you can see they all produce excellent result except for the naïve implementation 
which again suffer from bad aliasing. 
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These are frametimes of the different filter implementations. This was tested on a 
Mali-T760 MP8 device. As you can see the dual filter is the fastest, closely followed by 
the kawase filter. 
 
The 5x5 gaussian implemented here is implemented with 4 downsample and 
upsample passes – since it’s a separable blur, that gives a total of 16 render target 
switches, which directly affects performance. 
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Here we have bandwidth comparison numbers between the different filters. 
 
As you can see, most of the bandwidth for doing linear sampling goes into actual 
sampling. 5x5 gaussian is much better with only 10% read bandwidth.  
 
The dual filter only needs 7% of the totalt bandwidth compared to the linear 
sampling filter, and less than half compared to the kawase filter. The dual filter is also 
has very balanced read/write bandwidth usage compared to the other approaches – 
which is good. 
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And finally we have a comparison of the cache utilization of the different 
implementations. And this is all inline with what we can expect. Smaller kernels 
benefit from cache locality, while larger kernels will quickly start thrashing the cache. 
 
On mobile due to constraints on die area, the texture cache is quite small – which 
makes it even more important to use smaller kernels. 
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So, just to sum up the talk. As mentioned, mobile GPUs are already bandwidth-
efficient, but on-chip rendering with the use of extensions helps reduce bandwidth 
usage further – so please use these. The next step here is to work on getting this kind 
of on-chip rendering into future core APIs. 
 
“Dual filter” blur shows that it’s possible to implement a high quality bloom filter on 
mobile without killing performance. It may sound unintuitive, but using multiple-
passes and taking advantage of cache locality is a huge performance win. The next 
step here is to further look into alternative data flows. 
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